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Abstract. In most natural language processing systems there is no 
representation of the semantic knowledge of lexical units, but just 
subcategorization frames, selection restrictions and links to other 
paradigmatically-related lexical units. Some NLP systems, e.g. machine 
translation or dialogue-based systems, attempt to “understand” the input text by 
translating it into some kind of formal language-independent representation; 
this approach requires a knowledge base with conceptual representations which 
reflect the structure of human beings’ cognitive system. Even those systems in 
which surface semantics could be sufficient (e.g. automatic indexing or 
information extraction), the construction of a robust knowledge base guarantees 
its use in most natural language processing tasks, consolidating thus the concept 
of resource reuse. The objective of this paper is to highlight the advantages of 
storing conceptual meaning representations, and more particularly those in 
FunGramKB, instead of describing lexical meaning via semantic relations 
between lexical units. 
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1 FunGramKB and Cognitive Knowledge 
 
FunGramKB is a complex knowledge base which comprises two comprehensive 
information levels, where several independent modules are interrelated: 
 

Lexical level (i.e. linguistic knowledge): 
• The lexicon stores morphosyntactic, pragmatic and collocational information 

of words. 
• The morphicon helps our system to handle cases of inflectional morphology. 

 
Cognitive level (i.e. non-linguistic knowledge): 
• The ontology is presented as a hierarchical structure of all the concepts that a 

person has in mind when talking about everyday situations. 
• The cognicon stores procedural knowledge by means of cognitive 

macrostructures, i.e. script-like schemata in which a sequence of 
stereotypical actions is organised on the basis of temporal continuity, and 
more particularly on Allen's temporal model [1, 2, 3]. 

• The onomasticon stores information about instances of entities, such as 
people, cities, products, etc. 
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This two-level design involves that every lexical module is language-specific, 

while every cognitive module is shared by all languages. In other words, 
computational lexicographers must develop one lexicon and one morphicon for 
English, one lexicon and one morphicon for Spanish and so on, but knowledge 
engineers build just one ontology, one cognicon and one onomasticon to process any 
language input cognitively. FunGramKB is multipurpose in the sense that it is both 
multifunctional and multilingual. In other words, FunGramKB has been designed to 
be reused in various NLP tasks (e.g. information retrieval and extraction, machine 
translation, dialogue-based systems, etc) and with several natural languages.1 
 
 
2 Semantic Knowledge Representation in FunGramKB 
 
In cognitive psychology, commonsense knowledge is usually divided into three 
different types [11]: 
 

• Semantic knowledge - it stores cognitive information about words; it is a 
kind of mental dictionary. 

• Procedural knowledge - it stores information about how events are 
performed in ordinary situations: e.g. how to ride a bicycle, how to fry an 
egg...; it is a kind of manual for everyday actions. 

• Episodic knowledge - it stores information about specific biographic events 
or situations: e.g. our wedding-day; it is a kind of personal scrapbook. 

 
Therefore, if there are three types of knowledge involved in human reasoning, 

there must be three different kinds of knowledge schemata. These schemata are 
successfully mapped in an integrated way into the cognitive level of FunGramKB: 
 

• Semantic knowledge is represented in the form of meaning postulates in the 
ontology. 

• Procedural knowledge is represented in the form of cognitive 
macrostructures in the cognicon. 

• Episodic knowledge can be stored as a case base.2 
 

A key factor for successful reasoning with FunGramKB is that all these 
knowledge schemata (i.e. meaning postulates, cognitive macrostructures and cases) 
are represented through the same formal language, so information sharing takes place 
more effectively among all cognitive modules. Our formal language of cognitive 

                                                        
1 English, Spanish, German, French and Italian are supported in the current version of 
FunGramKB. 

2 FunGramKB can be very useful in case-based reasoning, where problems are solved by 
remembering previous similar cases and reusing general knowledge. 



representation is partially founded on Dik’s functional model [6, 7], which was 
initially devised for machine translation [5].3 
 This paper focuses on the semantic knowledge representation, which takes the 
form of meaning postulates in FunGramKB. A meaning postulate is a set of one or 
more logically connected predications (e1, e2... en), which are cognitive constructs 
carrying the generic features of the concept.4 Concepts, and not words, are the 
building blocks for the formal description of meaning postulates, so a meaning 
postulate becomes a language-independent semantic knowledge representation. To 
illustrate, predications in the meaning postulate of BIRD are presented in (1):5 
 
 (1)  BIRD 
   +(e1: +BE_00 (x1: +BIRD_00)Theme (x2: +VERTEBRATE_00)Referent) 
   *(e2: +COMPRISE_00 (x1)Theme (x3: m +FEATHER_00 & 2 +LEG_00 & 2  
   +WING_00)Referent) 
   *(e3: +FLY_00 (x1)Agent (x1)Theme (x4)Origin (x5)Goal) 
 

These predications have the following natural language equivalents: 
 

(2)  Birds are always vertebrates. 
A typical bird has many feathers, two legs and two wings. 
A typical bird flies.6 

 
Dik proposes using words from the own language when describing meaning 

postulates, since meaning definition is an internal issue of the language [7]. However, 
this strategy contributes to lexical ambiguity due to the polysemous nature of the 
defining lexical units. In addition, describing the meaning of words in terms of other 
words leads to some linguistic dependency [13]. Instead, FunGramKB employs 
concepts for the formal description of meaning postulates, resulting in an 
interlanguage representation of meaning. 

A parser written in C# takes meaning postulates such as (1) and outputs XML-
formatted feature-value structures used as the input for the reasoning engine.7 An 

                                                        
3 FunGramKB is not a literal implementation of Dik’s lexical database, but we depart from his 
model in some important aspects with the aim of building a more robust knowledge base. 

4 The formal grammar of well-formed predications for meaning postulates in FunGramKB is 
described in [9]. 

5 For the sake of clarity, the names of concepts—which are presented in upper case—have been 
oversimplified. 

6 In FunGramKB, each predication taking part in a meaning postulate is preceded by a 
reasoning operator in order to state if the predication is strict (+) or defeasible (*). Our 
inference engine handles predications as rules, allowing monotonic reasoning with strict 
predications, and non-monotonic with defeasible predications. 
 
7 To illustrate, appendix 1 shows example (1) in XML. 



alternative could have been to use second-order predicate logics for the formal 
representation of lexical meaning. However, the problem lies not only on the little 
expressive power of predicate logics, but also on the fact that standard logics use 
monotonic reasoning, which isn’t robust enough for the simulation of human beings’ 
commonsense reasoning. 
 
 
3 Benefits of Conceptual Meaning Representation in FunGramKB 
 
Two strategies are typically used when describing meaning in computational 
lexicography [12]: the cognitive content in a lexical unit can be described by means of 
semantic features or primitives (i.e. conceptual meaning), or through associations with 
other lexical units in the lexicon (i.e. relational meaning). While the analysis of 
conceptual meaning is related to deep semantics, relational meaning belongs to 
surface semantics. Strictly speaking, the latter doesn’t give a real definition of the 
lexical unit, but it describes its usage in the language via “meaning relations” with 
other lexical units. In this section, we demonstrate that surface semantics presents two 
main types of problems which can be overcome by deep semantics: its expressive 
power is dramatically restricted, and redundancy is highly spread through the 
knowledge base. To illustrate this comparative analysis between relational and 
conceptual meanings, we take semantic relations from EuroWordNet [4, 14] and 
meaning postulates from FunGramKB.8 
 FunGramKB meaning postulates own greater expressive power than surface 
semantics. For example, EuroWordNet cannot fully exploit the cognitive content of 
lexical units, particularly when it is required to use some defining concepts which do 
not directly describe the definiendum but qualify neighbouring concepts in the 
meaning postulate (example 3): 
 
 (3)  OSTRICH 

((e3: COMPRISE (x1)Theme (x4: 2 LEG & 1 NECK)Referent)(e4: BE (x4)Theme 
(x5: LONG)Attribute)) 
((e5: COMPRISE (x1)Theme (x6: m FEATHER)Referent)(e6: BE (x6)Theme (x7: 
LARGE & SOFT)Attribute)) 

   ((e7: LIVE (x1)Theme (x8)Location)(e8: BE (x8)Theme (x9: HOT)Attribute)) 
 
 In this example, HOT does not describe an attribute of the entity referenced by 
OSTRICH but of the typical places where instances of this entity live in. Similar cases 
of “cognitive subordination” are found in the other two predications of this example 
(e.g. “a typical ostrich has many feathers, which are large and soft”). It is also very 
hard for surface semantics to represent phenomena such as quantification, 

                                                        
8 EuroWordNet is one of the best examples of multilingual “relational” database, which 
provides elaborate lexical networks by means of semantic relations between synsets (or cluster 
of synonymous words) within every language-dependent wordnet. In the examples of this 
paper, EuroWordNet relational specifications are presented more meaningfully by stating the 
most representative synset members involved instead of synsets’ unique identifiers. 



aspectuality, temporality or modality. In example (3), operators 2, 1 and m specify 
absolute quantification (e.g. “two legs and one neck”) and relative quantification (e.g. 
“many feathers”) for selection preferences in arguments (x4) and (x6) respectively. In 
example (4), operators egr (egressive) and past place some meaning components 
within the dimensions of aspectuality and temporality respectively:  
 
 (4)  FORGIVE 
   (e1: egr FEEL (x1: HUMAN)Theme (x2: ANGRY)Attribute (f1: HUMAN)Goal) 
   (e2: past BLAME (x1)Theme (x3)Referent (x4: f1)Goal) 
 
 In addition, EuroWordNet has introduced ten semantic relations (e.g. 
ROLE_AGENT, ROLE_INSTRUMENT, etc), and their reverse counterparts (e.g. 
INVOLVED_AGENT, INVOLVED_INSTRUMENT, etc), to encode data about 
arguments and adjuncts strongly involved in the meaning of verbs. By integrating 
frame semantics into surface semantics, meaning postulate (5) could have a near-
equivalent in (6), except for the lack of distinction between inclusive and exclusive 
disjunctions: 
 
 (5)  SWIM 

(e1: MOVE (x1: HUMAN ^ ANIMAL)Theme (f1: WATER)Means (f2: ARM | 
LEG)Instrument) 

 
 (6)  swim  HAS_HYPERONYM    move 
   swim   INVOLVED_AGENT    person 
   swim   INVOLVED _AGENT    animal  dis 
   swim  INVOLVED _LOCATION   water 
   swim  INVOLVED_INSTRUMENT  arm 
   swim  INVOLVED_INSTRUMENT  leg   dis 
 
 However, when meaning postulates become more complex cognitively, there is no 
way to state co-reference between internal conceptual units just via semantic 
relations. For example, co-indexation of arguments and satellites in example (4) 
allows the system to “understand” that the person who is forgiven did something 
wrong to the forgiver. 
 Taking advantage of the descriptive power of FunGramKB semantic knowledge 
formalism, we also use it as interlingua in the analysis and generation of texts, what 
favours the integration of lexical meaning in text semantics. Moreover, meaning 
postulates in the ontology and cognitive macrostructures in the cognicon are 
represented through the same formal language; thus knowledge can be shared more 
effectively between FunGramKB cognitive modules, particularly when reasoning 
mechanisms are triggered. To illustrate, example (7) presents some predications of the 
cognitive macrostructure EATING_AT_A_RESTAURANT: 
 
 (7)  EATING_AT_A_RESTAURANT 

(e1: ENTER (x1: CUSTOMER)Theme (x2: RESTAURANT)Target (f1: (e2: BE 
(x1)Theme (x3: HUNGRY)Attrribute))Reason) 
(e3: ACCOMPANY (x4: WAITER)Theme (x1)Referent (f2: TABLE)Target) 



(e4:  SIT (x1)Theme (x5: f1)Location) 
(e5: BRING (x4)Theme (x6: MENU ^ WINE_LIST)Referent (f4: x1)Target) 
(e6: REQUEST (x1)Theme (x7: FOOD | BEVERAGE)Referent (x4)Target) 
(e7: TELL (x4)Theme (x2: (e8: COOK (x10: COOK)Theme (x8: FOOD) 
Referent)Referent (x10)Target) 
(e9: BRING (x4)Theme (x9: BEVERAGE)Referent (f3: BAR)Source) 

 
Little effort has been made to build large-scale databases of procedural-knowledge 

schemata by means of semantic relations. To this respect, ThoughtTreasure [8] is an 
exceptional case of knowledge base for commonsense reasoning, containing about 
one hundred scripts. Thus, the first predication in cognitive macrostructure (8) would 
be closely mapped to the following relations in ThoughtTreasure: 
 

(8)  SCRIPT eat-in-restaurant 
[r1 eat-in-restaurant human] 
… 
[r3 eat-in-restaurant restaurant] 
[role01-of eat-in-restaurant customer] 
… 
[goal-of eat-in-restaurant [s-hunger customer]] 
… 
[event02-of eat-in-restaurant [arrive customer na restaurant]] 

 
However, this type of scripts presents the inherent deficiencies of relational 

notation, i.e. less descriptive power and more redundancy. 
 As far as redundancy in lexical meaning representations is concerned, duplication 
of knowledge is particularly remarkable when reverse relations or one-to-many 
relations are stored (examples 9 and 10): 
 
 (9)   bird   HAS_MERO_PART  feather 
   feather  HAS_HOLO_PART   bird   rev 
 

(10) bird   HAS_MERO_PART  feather 
   bird   HAS_MERO_PART  leg    con 
   bird   HAS_MERO_PART  wing   con 
 
 The problem is that most NLP ontologies work with asymmetric binary semantic 
relations. On the one hand, the relation between a source concept and a target one is 
not usually the same as that between the target concept and the source one. The most 
direct consequence is that the number of semantic relations outgrows. For example, 
EuroWordNet provides an inventory of sixty-five relations, but just nine of them are 
really symmetric—mainly those related to the language phenomena of synonymy and 
antonymy; consequently, twenty-seven relations could have been ignored if the 
relations themselves hadn’t displayed an intrinsic conceptual unidirectionality 
(example 9). Moreover, label rev is used to emphasize the asymmetric condition of 
the relation. On the other hand, whenever a source concept is linked to multiple target 



concepts, the database must store the whole relational specification for every target 
concept (example 10). 
 Furthermore, multilingual databases contribute to redundancy if relations are not 
assigned to concepts in a language-independent ontology, as this is the case of 
EuroWordNet (example 11): 
 

(11) bird   HAS_MERO_PART  feather 
   Vogel  HAS_MERO_PART  Feder 
   pájaro  HAS_MERO_PART  pluma 
   uccello HAS_MERO_PART  piuma 
   oiseau  HAS_MERO_PART  plume 

 
 The efficiency of knowledge management in FunGramKB is clearly shown in 
example (12), whose predication can infer all semantic relations in examples (9-11):9 
 

(12) BIRD 
*(e2: COMPRISE (x1: BIRD)Theme (x3: m FEATHER & 2 LEG & 2 
WING)Referent) 

 
 Redundancy originated by multilingualism does not occur in FunGramKB, since 
meaning postulates are cognitive representations of concepts, to which lexical units 
from different lexica are assigned. 
 Finally, FunGramKB reasoning engine also contributes to minimize redundancy 
as well as maximizing informativeness in our semantic knowledge repository. A 
meaning postulate in FunGramKB is like an iceberg - only a small amount is visible 
from the surface, so a lexical unit is associated to much more semantic information 
which is really shown in the meaning postulate of the concept to which that lexical 
unit is linked. In FunGramKB, all this underlying cognitive information is revealed 
through a process called MicroKnowing (Microconceptual-Knowledge Spreading), 
which takes place in the ontology of our system. This multi-level process is 
performed by means of two types of reasoning mechanisms: inheritance and 
inference. Our inheritance mechanism strictly involves the transfer of one or several 
predications from a superordinate concept to a subordinate one in the ontology. On 
the other hand, our inference mechanism is based on the structures shared between 
predications linked to conceptual units which do not take part in the same 
subsumption relation within the ontology. Both inheritance and inference can be 
successfully applied providing that the “stepwise conceptual decomposition” process 
is also triggered, i.e. conceptual units in a predication are substituted by their 
respective meaning postulates until a meaning representation composed of root basic 
concepts is reached. It is has been demonstrated elsewhere [10] that a meaning 
                                                        
9 Moreover, semantic knowledge representation in (13) provides a more accurate and realistic 
account of the world model, since FunGramKB does not assert that “birds have feathers” but 
that “a typical bird has many feathers”, what can allow non-monotonic reasoning when dealing 
with concepts such as PENGUIN. Non-monotonicity is a key issue in both human and machine 
reasoning, because it permits the withdrawal of conclusions which are true just for the typical 
members of a particular class. 



postulate consisting of just four predications can be easily spread to a set of twenty-
four predications. 
 
 
4 Conclusion 
 
Currently most NLP systems adopt a relational approach to represent lexical 
meanings, since it is easier to state associations among lexical units in the way of 
meaning relations than describing the cognitive content of lexical units formally. 
Although large-scale development of deep-semantic resources requires a lot of time 
and effort, the expressive power of conceptual meanings is much more robust and the 
management and maintenance of their knowledge becomes more efficient. In 
addition, even when surface semantics can be sufficient in some NLP systems (e.g. 
information retrieval or data mining), the construction of a knowledge base such as 
FunGramKB guarantees its use for any NLP task, consolidating thus the concept of 
resource reuse. 
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Appendix 1: FunGramKB Meaning Postulate for BIRD in XML 
 
 

<MP> 
<e N="1" OPr="+"> 

<lbcv> 
<cv>+BE_00</cv> 

</lbcv> 
<lx> 

<x N="1" SFx="Theme"> 
<lbceq> 

<ceq>+BIRD_00</ceq> 
</lbceq> 

</x> 
<x N="2" SFx="Referent"> 

<lbceq> 
<ceq>+VERTEBRATE_00</ceq> 

</lbceq> 
</x> 

</lx> 
</e> 
<e N="2" OPr="*"> 

<lbcv> 
<cv>+COMPRISE_00</cv> 

</lbcv> 
<lx> 

<x N="1" SFx="Theme"/> 
<x N="3" SFx="Referent"> 

<lbceq> 
<and> 

<ceq OPxf="m">+FEATHER_00</ceq> 
<ceq OPxf="2">+LEG_00</ceq> 
<ceq OPxf="2">+WING_00</ceq> 

</and> 
</lbceq> 

</x> 
</lx> 

</e> 
<e N="3" OPr="*"> 

<lbcv> 
<cv>+FLY_00</cv> 



</lbcv> 
<lx> 

<x N="1" SFx="Agent"/> 
<x N="1" SFx="Theme"/> 
<x N="4" SFx="Origin"/> 
<x N="5" SFx="Goal"/> 

</lx> 
</e> 

</MP> 
 


