
FIRST DRAFT

The implementation of the CLS Constructor in ARTEMIS

Carlos Periñán-Pascual

Francisco Arcas-Túnez

Abstract

Most natural language processing researchers highlight the benefits of

interlingua-based systems in multilingual settings. In this scenario, Role and

Reference Grammar can contribute to build a cross-language semantic

representation of the input text in terms of its logical structure. Our goal is

to describe the various stages in the development of one of the first

computational systems which employs a lexico-conceptual knowledge base

to generate the logical structure of sentences. Our approach actually

involved some changes in the standard functional model in order to convert

the logical structure into an ontology-grounded representation of sentential

meaning. In fact, we demonstrate that constructional schemata should

become the cornerstone of the syntax-semantics interface in this

computerized model of Role and Reference Grammar.

1. Introduction

In computational linguistics, lexical-semantic research is influenced by two

mainstreams: syntax-driven and ontology-driven semantics (Nirenburg &

Levin 1992). As has been the case in many lexicalist theories, syntax-driven

semantics focuses on those meaning components which can predict the

syntactic behavior of words. On the other hand, ontology-driven semantics

tries to infer text meaning from some language-independent model of a

world which is mapped to the lexicon of a given language. Although a

single approach is not sufficiently effective, most of the knowledge-based

natural language processing (NLP) systems are usually confined to one of

these two models.

 The goal of this chapter is to describe the design and development of

an NLP system whose lexical-semantic model is not only oriented to the

syntax of a given language but is also linked to a language-independent

ontology-grounded representation of text meaning. As a result, we have

implemented ARTEMIS (Automatically Representing TExt Meaning via an

Interlingua-based System), a proof-of-concept prototype which is based on

Role and Reference Grammar (RRG) as its linguistic model (Van Valin &

LaPolla 1997; Van Valin 2005) and which exploits FunGramKB as its

knowledge base (Periñán-Pascual & Arcas-Túnez 2004, 2005, 2007, 2008,

2010a, 2010b; Periñán-Pascual & Mairal-Usón 2009, 2010, 2011; Mairal-

Usón & Periñán-Pascual 2009). We also intend to demonstrate that

projectionist and constructivist approaches to sentential meaning can be

conflated in a computer-tractable model of RRG.

 This chapter is organised as follows: sections 2 and 3 sketch out the

FunGramKB and RRG models respectively, where in the latter we also

introduce our major changes to the standard functional model; and section 4

analyses the different processing stages involved in the CLS Constructor,

which outputs a cross-language representation of the input text.

2. FunGramKB

ARTEMIS is a knowledge-based system, since it operates with a repository

of knowledge (in our case, lexical, constructional and conceptual

knowledge) which is clearly separated from the rest of the system and with

an inference engine whose role is to apply relevant knowledge in problem

resolution.1 More particularly, ARTEMIS is provided with FunGramKB, a

multipurpose lexico-conceptual knowledge base to be implemented in

natural language understanding applications.2 On the one hand,

FunGramKB is multipurpose in the sense that it is both multifunctional and

multilingual. Thus, FunGramKB has been designed to be potentially reused

1 In the case of computational linguistics, one of these problems is word sense
disambiguation.
2 We use the name “FunGramKB Suite” to refer to our knowledge-engineering tool
(www.fungramkb.com) and “FunGramKB” to the resulting knowledge base. FunGramKB
Suite was developed in C# using the ASP.NET platform and a MySQL database.

in many NLP tasks (e.g. information retrieval and extraction, machine

translation, dialogue-based systems, etc) and with many natural languages.3

On the other hand, our knowledge base comprises three major knowledge

levels, consisting of several independent but interrelated modules:

a. Lexical level:

a.1. The Lexicon stores morphosyntactic and collocational information

about lexical units. The FunGramKB lexical model is not a literal

implementation of the RRG lexicon, although some of the major linguistic

assumptions of RRG are still preserved, e.g. the logical structure.

a.2. The Morphicon helps our system to handle cases of inflectional

morphology.

b. Grammatical level:

b.1. The Grammaticon stores the constructional schemata which help RRG

to construct the syntax-semantics linking algorithm. More particularly, the

Grammaticon is composed of several Constructicon modules that are

inspired in the four levels of the Lexical Constructional Model (LCM) (Ruiz

de Mendoza & Mairal-Usón 2008; Mairal-Usón & Ruiz de Mendoza 2009),

i.e. argumental, implicational, illocutionary and discursive.

c. Conceptual level:

c.1. The Ontology is presented as a hierarchical catalogue of the concepts

that a person has in mind, so here is where semantic knowledge is stored in

3 English and Spanish are fully supported in the current version of FunGramKB Suite,
although we have just begun to work with other languages, such as German, French, Italian,
Bulgarian and Catalan.

the form of meaning postulates. The Ontology consists of a general-purpose

module (i.e. Core Ontology) and several domain-specific terminological

modules (i.e. Satellite Ontologies).

c.2. The Cognicon stores procedural knowledge by means of scripts, i.e.

schemata in which a sequence of stereotypical actions is organised on the

basis of temporal continuity, and more particularly on Allen's temporal

model (Allen 1983; Allen & Ferguson 1994).

c.3. The Onomasticon stores information about instances of entities and

events, such as Bill Gates or 9/11. This module stores two different types of

schemata (i.e. snapshots and stories), since instances can be portrayed

synchronically or diachronically.

In the FunGramKB architecture, every lexical or grammatical

module is language-dependent, whereas every conceptual module is shared

by all languages. In other words, linguists must develop one Lexicon, one

Morphicon and one Grammaticon for English, one Lexicon, one Morphicon

and one Grammaticon for Spanish and so on, but knowledge engineers build

just one Ontology, one Cognicon and one Onomasticon to process any

language input conceptually. In this scenario, FunGramKB adopts a

conceptualist approach, since the Ontology becomes the pivotal module for

the whole architecture.

 FunGramKB is the product resulting from a knowledge-engineering

project, where our major concern has always been its application in

linguistically-aware and psychologically-plausible NLP systems. It is for

this reason that the linguistic level in our knowledge base is grounded on the

RRG theory, briefly described in the following section.

3. Role and Reference Grammar

3.1 The standard model

RRG is one of the most relevant functional models of language in current

linguistics. RRG was not actually designed for NLP, but this linguistic

theory presents three characteristics which make it a suitable model for

NLP:

a. RRG is a model where morphosyntactic structures and grammatical rules

are explained in relation to their semantic and communicative functions.

b. RRG is a monostratal theory, where the syntactic and semantic

components are directly connected through a “linking algorithm”.

c. RRG is a model which owns typological adequacy.

The features (a-c) are essential for a computational model which

aims to provide the capability of natural language understanding. Firstly, a

functional view of language allows us to capture syntactic-semantic

generalizations which are fundamental to explain the semantic motivation of

grammatical phenomena. Secondly, the system is more effectively designed

if an algorithm is able to account for both the comprehension and the

production of linguistic expressions. Thirdly, typological adequacy becomes

an added value when working in a multilingual environment.

RRG is concerned with two fundamental aspects of language

description: the relational structure, which deals with relations between a

predicate and its argument(s), and the non-relational structure, which

accounts for the hierarchical organization of phrases, clauses and sentences.

Consequently, the notions of “logical structure” and “layered structure of

the clause” (LSC) are fundamental in the analysis of language.

On the one hand, RRG rejects the standard formats for representing

clause structure (e.g. grammatical relations), as can be seen in Figure 1 (Van

Valin & LaPolla 1997: 38).4

Figure 1. RRG layered structure of the clause.

This hierarchical structure is both semantically and pragmatically motivated,

4 Abbreviations: LDP ‘left-detached position’, RDP ‘right-detached position’, PrCS
‘precore slot’, PoCS ‘postcore slot’, ARG ‘argument’, and PRED ‘predicate’.

and not only syntactically based: whereas constituents such as the nucleus,

core, periphery and clause are semantically motivated, the detached phrases

and the extra-core slots seem to be pragmatically motivated (Van Valin

2005: 8). The LSC is universal; however, cross-linguistic variations are

captured by means of the syntactic templates of each language, so syntactic

representations are not built on phrase-structure rules.

 On the other hand, the semantic representation of a sentence

originates from the logical structure assigned to verbs and other predicates

in the lexicon on the basis of its distribution in a typology of classes (i.e.

state, activity, achievement, semelfactive, accomplishment, active

accomplishment, and their corresponding causative forms). To illustrate, (1-

3) show that each verb class is represented formally by means of a different

logical structure, being composed of elements of a universal semantic

metalanguage which consists of constants, variables and semantic

operators.5

(1) see: see' (x,y) [state]

(2) run: do' (x, [run' (x)]) [activity]

(3) receive: BECOME have' (x,y) [accomplishment]

Operators such as aspect, modality, tense or illocutionary force, among

many others, are also represented in the logical structure of sentences. Thus,

the sentence “Peter broke the glass”, for example, is assigned the following

5 The verb class adscription system is based on Vendler’s (1967) Aktionsart distinctions,
and the decompositional system is a variant of the one proposed by Dowty (1979).

semantic representation:

(4) <IF
DEC

 <TNS
PAST

 <ASP
PERF <[do' (Peter, Ø)] CAUSE

[BECOME broken' (glass)]>>>>

In this model, the syntax-semantics linkage is divided into five steps, as

shown in Figure 2:6

a. Determine the LSC.

b. Identify the macroroles (i.e. Actor and Undergoer)7 of the core arguments

in terms of the privileged syntactic argument selection hierarchy (Van Valin

2005: 100).

c. Retrieve from the lexicon the logical structure of the predicate in the

nucleus of the clause.

d. Assign macroroles to the arguments in the logical structure according to

the Actor-Undergoer hierarchy (Van Valin 2005: 126).

e. On the basis of their macroroles, link the arguments determined in step (a)

with the arguments found in step (c) until all core arguments are linked.

6 The linkage algorithm has been hugely simplified and adapted from Van Valin (2005:
149-150).
7 The macroroles Actor and Undergoer can be regarded as the “logical subject” and the
“logical object” respectively.

Figure 2. RRG syntax-semantics linkage.8

Therefore, the macroroles Actor and Undergoer become a critical

component in the syntax-semantics linkage. On the whole, the lexicon is the

key module in the RRG framework, since the semantic representation of a

sentence is built on the logical structure of the predicate. This is the reason

why RRG is viewed as a projectionist model of language.

8 In the latest version of the RRG model, the label NP is now replaced by RP (Reference
Phrase), which, unlike NP, is a non-endocentric construct: “The nucleus of an RP is neither
restricted to nominals, nor is it restricted to lexical heads” (Van Valin 2009: 708).

3.2 The computational model

Up to now, there have only been two serious attempts to implement some of

the aspects of the RRG theory computationally. For instance, Guest (2009)

developed a parser which is able to output the LSC of an English sentence.

However, a more challenging research programme can be found in

UniArab—Universal Arabic Machine Translator (Salem, Hensman & Nolan

2008), an interlingua-based machine translation prototype which is able to

provide a working translation of Modern Standard Arabic to English. One of

the primary strengths of UniArab is to build the logical structure of an

Arabic sentence, but the project does not manage to provide a robust

approach to the semantics of lexical units.

 ARTEMIS comes into the scene as one of the first systems which

employs a robust knowledge base to generate a full-fledged logical structure

to be used in NLP applications requiring language comprehension

capabilities. This new approach led us to make some changes to the RRG

standard model, since an enhanced representation of the logical structure

was required, as explained in the following section.

3.2.1 The Construction category

Undoubtedly, constructional meaning improves the descriptive power of a

semantic theory. Van Valin (2005: 3) recognised that “a theory of clause

structure should capture all of the universal features of clauses”, so we

integrated the construction as a universal category into the LSC. Therefore,

the clause is configured now as one or more argumental constructions (L1-

CONSTRUCTION)9 which are recursively arranged, as shown in Figure 3.

Figure 3. Enhanced model of the LSC.

It is clear that compositionality is one of the most distinctive features of

sentential processing, but this is such an overused term that we want to

focus on some nuances that will help us to provide a clear definition of

“construction”. Thus, following Pelletier’s categorization (2012),

9 In fact, this type of construction belongs to the Level 1 of the LCM, i.e. the argumental
layer which accounts for the core grammatical properties of lexical items.

FunGramKB adopts a compositional wholist model of computational

semantics, which integrates the “functional compositionality”—as defined

in (5)—of sentential semantics with the “ontological holism”—as defined in

(6)—of constructional semantics.10

(5) The µ of a whole is a function of the µ’s of its parts and the

ways those parts are combined (Pelletier 2012: 153).11

(6) Some properties can only be attributed to entities that are not

individuals (Pelletier 2012: 156).

In other words, functional compositionality allows a complex whole (e.g.

the sentence) to have things (e.g. sentential meaning) which are not present

in the parts (e.g. the words), providing that the function introduces this same

material every time it is faced with the same parts and manner of

combination (e.g. the construction). On the other hand, ontological holism

allows a complex whole (e.g. the construction) to have properties (e.g.

constructional meaning) which are not properties of any part (e.g. the

words). In accordance with these complementary distinctions resulting from

the view of compositionality and holism, our definition of “construction” is

presented as follows:

(7) A construction is a pairing of form and meaning, serving as a

building block in the compositionality of sentential

10 Unlike the computational meaning with which the word “ontology” is used throughout
this chapter, the term “ontological holism” should be understood in its philosophical sense.
11 µ symbolizes the “meaning function”, i.e. X = µ(A), where A is some syntactic item and
X is the meaning of A.

semantics, whose meaning cannot be fully derived from the

sum of the lexical meanings of the individual constructs

taking part in the utterance.12

Thus, from the FunGramKB approach, the sentence “John pounded the nail

flat into the wall” consists of three argumental constructions: Kernel-2,

Transitive Resultative and Caused-Motion.13

(8) [[[John pounded the nail]Kernel-2 flat]Transitive-Resultative into the

wall]Caused-Motion

The remaining components can only be perceived as constructs, whose

meanings are directly derived from their meaning postulates. In terms of the

FunGramKB model, lexical constructs get their meaning from the meaning

postulates stored in the Ontology, whereas constructional meaning is shaped

by the Core Grammar in the Lexicon and the constructional schemata in the

Grammaticon.

The FunGramKB constructional schema, which serves as a machine-

tractable representation of the construction, is defined in terms of constraints

which license functional compositionality with other constructs or

constructions. To illustrate, Figure 4 presents the attribute-value matrix

(AVM) of the Caused-Motion Construction.

12 Derivative morphemes are not considered to be linguistic objects in the current version of
FunGramKB, so the minimal constructs in the processing of linguistic realizations take the
form of lexical units.
13 Kernel Constructions correspond to basic intransitive (type 1), monotransitive (type 2)
and ditransitive (type 3) constructions, where zero-argument verbs raise a Kernel-0
Construction.

Figure 4. The constructional schema of the Caused-Motion Construction.14

The constructional schema contains the properties common to all the

instances of a given construction. Therefore, the Grammaticon stores types

of constructions to which words in the Lexicon are linked. Up to now, these

types of constructions are arranged in a flat organization, instead of relating

them in terms of an inheritance hierarchy.15 The properties which are

defined in constructional schemata are rather independent from language so

as to determine cross-linguistic generalizations. Indeed, phrase realizations

of variables (e.g. NP, PP etc) and the typical prepositions heading

prepositional phrases are the only two attributes in the AVM which are

language-dependent (Figure 5).

14 Abbreviations: L1-constr ‘L1-constructional schema’ and Prefer ‘Selectional preference’.
15 For example, Goldberg (1995) suggested how to capture generalizations across
constructions by means of an inheritance hierarchy of constructions, where the lower levels
are specializations in form and function of the highest level. Whether this inheritance
network is monotonic or non-monotonic is still a debatable issue.

Figure 5. Attributes of the constructional schema.

It is important to bear in mind that the universality of the category

construction does not involve the claim that the whole inventory of

constructional schemata should be shared by any language. In fact, a given

construction can be licensed in a particular language if and only if there is at

least one entry in the Lexicon which contains a pointer to that

construction.16 As a result, there was a need to create an L1-Constructicon

module, whose interface is shown in Figure 6, for every language in

FunGramKB Suite.

16 As shown in Figure 5, construction-type codes in the lexical entry serve as pointers to
constructional schemata.

Figure 6. The L1-Constructicon interface.

Although “(…) there has been a disagreement in the CxG literature about

whether or not ‘constructions must have meaning’” (Sag 2012: 87),

FunGramKB constructions are essentially meaning-bearing devices, where

their semantic burden lies in the Aktionsart (i.e. aspectual meaning) and/or

the COREL scheme (i.e. conceptual meaning).17 Indeed, we can infer from

17 COREL (COnceptual Representation Language) is an interface language to formalize
conceptual knowledge in FunGramKB. Periñán-Pascual and Mairal-Usón (2010) described
the grammar of this notational language.

the definition (7) that the raison d'être of a construction is its semantic

contribution to that part of the meaning of the sentence which cannot be

derived from the lexical units.

In short, FunGramKB adopts a hybrid approach to constructional

meaning, i.e. halfway between projectionism (e.g. Jackendoff 1990;

Pustejovsly 1991; Rappaport Hovav & Levin 1998) and constructivism (e.g.

Goldberg 1995; Croft 2001). On the one hand, our language model is much

closer to projectionism in terms of how linguistic realizations of

constructions are related to their semantic descriptions; in fact, FunGramKB

shows a clear-cut separation between the linguistic modules, i.e. the Lexicon

and the Grammaticon, where the projection from syntax to semantics goes

through the pointers in the lexical entries. On the other hand, our language

model is much closer to constructivism in terms of how lexical units and

constructions jointly affect sentential meaning.

3.2.2 The conceptual logical structure

Another key difference from the standard RRG model is the format of the

logical structure, which now becomes a real cross-language representation

to be used in multilingual NLP systems with FunGramKB as their

knowledge base. As a result, there was a shift of the logical structure into

the conceptual logical structure (CLS), which involved a number of changes

as illustrated in (9).

(9) Peter broke the glass.

Logical structure:

<IF
DEC

 <TNS
PAST

 <ASP
PERF <[do' (Peter, Ø)] CAUSE

[BECOME broken' (glass)]>>>>

 CLS:

<IF
DEC

 <TNS
PAST

 <ASP
PERF <CONSTR-L1

KER2

<[AKT
CACC [+BREAK_00 (%PETER_00-Theme,

$GLASS_00-Referent)]]>>>>

Firstly, the instantiation of variables takes the form not of predicates but of

ontological concepts (e.g. the terminal concept $GLASS_00 instead of the

predicate glass). Secondly, every instantiated concept is assigned a thematic

role from the thematic frame of the event to which the verb is linked (e.g.

%PETER_00 is the Theme and $GLASS_00 is the Referent in the cognitive

situation described by the event +BREAK_00). In contrast to RRG,

thematic roles do play a paramount role in the CLS. Indeed, ARTEMIS is

only able to perform the lexico-conceptual linkage once the constituents in

the parse tree are tagged with the FunGramKB thematic roles. The NLP

system can subsequently reach a deeper level of comprehension by deriving

the extended COREL scheme (10) from the CLS in (9).

(10) +(e1: +DAMAGE_00 (x1: %PETER_00)Theme (x2:

$GLASS_00)Referent (f1: (e2: +SPLIT_00 (x1)Theme

(x2)Referent))Result)

 ‘Peter damaged the glass into pieces’

We intend to enrich the extended COREL scheme not only with the

knowledge from the meaning postulates in the Ontology but also with that

from the scripts in the Cognicon and from the snapshots and stories in the

Onomasticon.18 Thirdly, every argumental construction is embodied in a

constructional operator (i.e. CONSTR-L1) whose scope is the core of the

clause. Finally, the Aktionsart operator (i.e. AKT) together with an

“argument pattern”19 headed by the event—as shown in (11)—replaces the

semantic skeleton originated by the RRG decompositional system.

(11) [event (argument-role, argument-role…)]

These two new operators in the logical structure (i.e. CONSTR-L1 and

AKT) play a joint role in shaping sentential meaning, since a given

argumental construction not only contributes to the enrichment of the

COREL scheme but also helps to determine the Aktionsart. In particular,

and due to factors such as the linearity of processing, the concatenation of

grammatical constituents and the functional compositionality described in

the previous section, the right-most argumental construction which the

processor finds in the input is the one which directly impacts on the

aspectual value of the verb, as shown in (12-14).20

(12) <IF
DECL <Tense

PAST <CONSTR-L1
KER2 <AKT

ACT [$POU0D_02

(%JOH0_00-Agent, +0AIL_01-Goal)]>>>>

18 For example, a snapshot containing personal knowledge about Peter could reveal that he
suffers from haemophilia, adding a potential risk to the state of affairs portrayed by the
sentence.
19 Despite its name, an argument pattern can also introduce a further nucleus in the case of
nuclear cosubordination, just as occurs with the Resultative Construction.
20 It should be noted that the right-most construction in the input is represented by the left-
most CONSTR-L1 operator in the bracketed representation of the CLS.

 ‘John pounded the nail’

(13) <IF
DECL <Tense

PAST <CONSTR-L1
RESU <CONSTR-L1

KER2

<AKT
CACC [$POU0D_02 (%JOH0_00-Agent, +0AIL_01-

Goal, +FLAT_00-Result)]>>>>>

‘John pounded the nail flat’

(14) <IF
DECL <Tense

PAST <CONSTR-L1
CMOT <CONSTR-L1

KER2

<AKT
CACC [$POU0D_02 (%JOH0_00-Agent, +0AIL_01-

Goal, +WALL_00-Goal)]>>>>>

 ‘John pounded the nail into the wall’

As occurs in (12), Kernel Constructions are the only type of constructions

which are not formalised in the Constructicon, but are modeled within the

lexical entry of the verb. On the other hand, in (13) the L1-Constructicon

raises the Transitive-Resultative Construction (RESU) which makes the

state of affairs become a causative accomplishment (CACC), whereas in

(14) the Caused-Motion Construction (CMOT) similarly brings forward a

causative accomplishment. As shown in (13-14), constructional meaning

ultimately determines aspectual meaning.21 The following section describes

how the whole CLS is automatically built.

4. The CLS Constructor in ARTEMIS

21 Periñán-Pascual (2013) describes the interface between the Lexicon and the L1-
Constructicon in sentential processing.

To avoid being distracted from implementation details, Figure 7 shows the

UML diagram22 which serves to describe the logical activity which models

the behaviour of the CLS Constructor.

Figure 7. The ARTEMIS process (abridged version).

In the following sections, we describe the main stages involved in the

syntax-semantics linking algorithm with FunGramKB. To illustrate, we will

use as an example the sentence (15), whose CLS is (16).

(15) John pounded the nail flat into the wall.

(16) <IF
DECL <Tense

PAST <CONSTR-L1
CMOT <CONSTR-L1

RESU <CONSTR-

22 UML (Unified Modeling Language) is “a general-purpose visual modeling language that
is used to specify, visualize, construct, and document the artifacts of a software system”
(Rumbaugh, Jacobson & Booch 1999: 3).

L1
KER2 <AKT

CACC
[$POU0D_02 (%JOH0_00-Agent,

+0AIL_01-Goal, +FLAT_00-Result, +WALL_00-

Goal)]>>>>>>

4.1. Pre-processing

First of all, the input is split into sentences, and then into word tokens. In

other words, this task consists in segmenting the input into basic units of

analysis. In the following task, the word tokens are lemmatised. Finally,

every token is labeled with a unique part-of-speech tag. We employed the

OpenNLP library (Baldridge, Morton & Bierner 2001) for tokenization and

part-of-speech tagging, and the LemmaSharp library (Jursic, Mozetic,

Erjavec & Lavrac 2010) for lemmatization. Following the object-oriented

paradigm, we represent feature-based structures as AVMs which are

computationally implemented in the form of user-defined objects in the

programming language C#.23 For example, this multi-task stage outputs the

AVMs shown in Figure 8.

23 Together with C++ and Java, C# (C-Sharp) is one of the most popular general-purpose
object-oriented programming languages in modern computing.

Figure 8. AVMs of word tokens.

It is worth noting that part-of-speech tagging involves predicate

conceptualization, bringing in the problem of word-sense disambiguation.

Since lexical information in FunGramKB is linked to the senses of words

(i.e. sense-oriented approach), a word-sense disambiguator should firstly tag

the lemmas with a single conceptual label from the Ontology, or, in the case

of proper nouns, from the Onomasticon. This disambiguator is still work in

progress, so now users must disambiguate polysemous words from the

ARTEMIS interface before the parsing occurs.

4.2. Grammar building

ARTEMIS follows the well-known paradigm of constraint-based grammars,

also known as unification grammars, which can encode grammatical

knowledge irrespectively of the type of NLP algorithm.24 The key

component of constraint-based grammars can be found in the complex

formal descriptions of grammatical units as AVMs, describing features

which can be merged through the unification operation. Thus, parsing is not

guided just by the sequence of phrase-structure rules but also by the

satisfaction of a set of constraints,25 which are intended to determine

structural preference and semantic plausibility, where no single type of

constraint is able to resolve any type of local syntactic ambiguity.

 Unlike an RRG syntactic analysis such as the one shown in Figure 2,

which is based on an inventory of templates, i.e. syntactic trees which do

not explicitly state the order of constituents but just their hierarchical

organization, ARTEMIS relies on three types of feature-based production

rules, i.e. syntactic, constructional and lexical rules. Firstly, syntactic rules

are aimed to build the enhanced framework of the LSC (Figure 3).

Secondly, constructional rules serve to embed the constructional schemata

stored in the L1-Constructicon into the enhanced LSC. When constructional

rules are built, some default values in constructional schemata are replaced

24 Moreover, from the approach of computational linguistics, the time of grammar
development with the formalisms of unification grammars is significantly shorter than with
phrase-structure grammars (Uszkoreit & Zaenen 1995).
25 As Cooper (2002: 311) noted, parsing is reduced to a constraint satisfaction problem, i.e.
“to ensure syntactic well-formedness of a word sequence it is necessary to ensure that all
constraints are simultaneously satisfied by the sequence”. For this reason, unification
grammars are said to adopt a “constraint-satisfaction model”.

by those values in the Core Grammar of the lexical entry of the verb; on the

contrary, specific values in constructional schemata override those stated in

the lexical entry, so non-monotonic inheritance takes place in the projection

operation between the Lexicon and the L1-Constructicon. For instance,

Figure 9 shows the Core Grammar of the verb pound.26

Figure 9. The Core Grammar of pound.

In this example, the verb is linked to the constructional schema of the

Caused-Motion Construction, which was shown in Figure 4. Thus, the

constructional CLS can inherit monotonically the AVMs of the X and Y

26 It should be noted that, instead of letting lexical entries store the default macrorole,
phrase realization and syntax of variable instantiations, these types of knowledge are
actually retrieved from the RRG theoretical framework. Mairal-Usón and Periñán-Pascual
(2009) presented the anatomy of the FunGramKB Lexicon by describing the different types
of features which form part of a predicate’s lexical entry.

variables from the lexical entry, whereas the AVM of the W variable is

introduced and the Aktionsart value in the lexical entry is overriden. Indeed,

this is grounded on one of the basic tenets of constructivist grammars to

resolve the conflict between lexical semantics and constructional semantics,

i.e. the override principle (Michaelis 2003: 101):

If lexical and structural meanings conflict, the semantic specifications

of the lexical element conform to those of the grammatical structure

with which that lexical item is combined.

Thirdly, lexical rules provide the tokens with morphosyntactic and semantic

information from the Lexicon and the Ontology respectively. Unlike

syntactic rules, which users can pre-define through the Grammar

Development Environment, constructional and lexical rules are created

dynamically at runtime. In other words, in order to make sentential

processing faster and more effective, ARTEMIS will build only those

constructional and lexical rules which can be directly derived from the

constructional schemata and lexical entries being linked to the predicates in

the input stream. Therefore, this stage finally outputs a single text file

containing those constraint-based production rules which are required to

parse a given input text. In this fashion, the system can gain efficiency by

handling only those rules which are potentially relevant, thus minimizing

the complexity of processing.

Before we begin to describe the ARTEMIS parser, we should note

that Pickering and Van Gompel (2006) remind us that one of the main

concerns in the language processing driven by a feature-based unification

grammar is that the whole set of constraints which can be involved in the

processing should be identified beforehand, as well as the precise way these

constraints can affect that processing. As a result, this type of computational

model requires a large-scale repository of fine-grained morphosyntactic,

semantic and pragmatic knowledge on which NLP algorithms are based.

Otherwise, the system would have to deal with a “lexico-constructional

knowledge bottleneck”. Indeed, this is the risk that comes when you fail to

develop properly one of the key components in this type of applications, i.e.

the knowledge base.

4.3. Syntactic parsing

Since ARTEMIS is currently a proof-of-concept NLP system, we chose to

perform our syntactic analysis with the constraint-based chart parser in the

NLTK library (Bird, Klein & Loper 2009: 327-356).27 More particularly, the

parser is based on Earley’s algorithm (Earley 1970), which can be described

as a bottom-up chart parser with top-down prediction, thus improving the

27 Since the FunGramKB Suite is developed in ASP.NET and C#, it was necessary to use
IronPython to integrate the NLTK Python packages into the .NET framework. However, it
is worth noting that Python is a script language, so the parser coding is in plain text files
which are compiled at runtime and then interpreted. Therefore, as speed becomes a
determining factor in any NLP system, we intend to implement a C# version of this chart
parser when applied in a realistic scenario.

efficiency of parsing. Chart parsing uses dynamic programming to parse the

text by iteratively adding edges to a chart. Each edge represents a hypothesis

about the tree structure for a subsequence of the text. The chart parser

incrementally adds new edges to the chart, where the chart rules specify the

conditions under which new edges should be added to the chart. Parsing is

complete when the chart reaches a stage where none of the chart rules adds

any new edges. The psychologically-plausible behaviour of this parser lies

in the fact that it is:

a. an incremental left-corner parser, where each successive word being

encountered is incorporated into a larger structure by combining bottom-up

processing with top-down predictions, and

b. a parallel parser, since multiple parse structures can be generated locally,

so there is no need to re-analyse the input if one parse structure proves

incorrect (i.e. no backtracking).

From a psycholinguistic approach, in contrast with the two-stage

model of sentential processing,28 the architecture of the constraint-based

parser takes the form of an interactive processor which employs both

syntactic and semantic information from the beginning of the analysis. In

our case, ARTEMIS is based on an interactive model of language analysis

which is built upon a database whose (non-)linguistic knowledge is stored in

28 One of the best-known instances of the two-stage model is the Garden-Path (Frazier &
Fodor 1978; Frazier 1979), in which a processor makes some initial decisions on the basis
of strategies defined exclusively in terms of syntactic information and in a second phase
semantic information is used to check whether the initial analysis is adequate.

several rather independent modules.29

The second task in this stage consists in resolving global syntactic

ambiguity, that is, the system should select a winner from among the

multiple parse trees which can be generated from a given input sentence. A

particularly common source of syntactic ambiguity is found in

constructional co-occurrence, or the combination of several constructions

within the same clause. Figure 10 illustrates the linguistic phenomenon of

constructional co-occurrence, which is driven by the operation of

constructional merger, and the impact on the syntax-semantics interface.

Figure 10. ARTEMIS syntax-semantics linkage.

29 See section 2.

Each L1-CONSTRUCTION in the LSC (e.g. Kernel-2, Transitive-

Resultative and Caused-Motion) typically involves the introduction of at

least one argumental slot into the core of the clause (e.g. two, one and one

for the previous three constructions respectively), so we could identify in

the CLS a distinctive “argumental subpattern” for every instantiation of a

given type of construction, where the first argumental subpattern (i.e. the

bottom-most L1-CONSTRUCTION in the LSC) serves as the base of the

argumental expansion. Consequently, any further L1-construction results

from the merger of the new argumental slot(s) with the constructional base.

For example, in Figure 10 the argumental pattern consists of three

subpatterns, as shown in (17).

(17) Kernel-2, or constructional base: [$POU0D_02

(%JOH0_00-Agent, +0AIL_01-Goal)]

Resultative: [$POU0D_02 (%JOH0_00-Agent,

+0AIL_01-Goal, +FLAT_00-Result)]

Caused-Motion: [$POU0D_02 (%JOH0_00-Agent,

+0AIL_01-Goal, +WALL_00-Goal)]

Therefore, from the approach of the syntax-semantics linkage, we can

conclude that:

a. the argumental pattern in the CLS is made up of one or more argumental

slots, which are instantiated in constructs with the syntactic function of

argument (ARG) or subordinated nucleus (NUC-S) in the core of the LSC,

and

b. the semantic constraints determined by the constructional schema

assigned to each type of construction in the LSC should also be validated for

the corresponding argumental subpattern in the CLS.

Thus, since constructional co-occurrence is a specific instance of

functional compositionality, we derive as a corollary the principle of

argumental compositionality:

(18) The number of slots of the argumental pattern in the CLS

must be equal to the sum of the number of slots in each

constructional schema in the LSC.

When dealing with the resolution of the global syntactic ambiguity raised by

constructional co-occurrence, we noted that argumental constructions

cannot co-occur freely. For example, the Inchoative cannot co-occur with

the Middle Construction in the same clause, or the Kernel-2 with the

Intransitive Resultative, among many other impossible combinations.

Therefore, we devised a weight-based distribution method to restrict

constructional co-occurrence in the clause. Firstly, argumental constructions

were distributed into groups on the basis of the number of arguments which

are involved (i.e. one, two or three) and of the FunGramKB module from

where the system retrieves most of the knowledge required to build the

constructional rule (i.e. the Lexicon for Kernel Constructions and the L1-

Constructicon for the remainder). Secondly, a weight was assigned to each

constructional group resulting from the previous step. As shown in Table 1,

the weight of the construction is fixed in proportion to the number of its

argumental slots, and the weight is also greater if the constructional schema

is derived from the L1-Constructicon rather than from the Lexicon.30

Table 1. Weight-based distribution of argumental constructions.

Group Description Weight Example

A An argument subpattern
derived from a one-
argument constructional
schema in the L1-
Constructicon

1 Inchoative
Unexpressed object

B An argument subpattern
derived from the one-
argument constructional
schema in the Lexicon
Core Grammar

2 Kernel-1

C An argument subpattern
derived from a two-
argument constructional
schema in the L1-
Constructicon

3 Middle
Instrument subject
Intransitive resultative
Location subject

D An argument subpattern
derived from the two-
argument constructional
schema in the Lexicon
Core Grammar

4 Kernel-2

E An argument subpattern
derived from a three-
argument constructional
schema in the L1-
Constructicon

5 Benefactive
Caused motion
Dative
Transitive resultative

F An argument subpattern 6 Kernel-3

30 Although constructional merger needs further in-depth corpus-based research, our initial
experiments have led us to define these two criteria as determining factors in the
arrangement of constructional groups.

derived from the three-
argument constructional
schema in the Lexicon
Core Grammar

Thirdly, we determined the four principles which license constructional

merger:

a. Principle of Constructional Anchorage: any L1-CONSTR node above the

bottom-most one in the LSC should be argumentally anchored on the latter.

In other words, the argumental slots in the constructional base should also

be taken into account for the validation of the schemata linked to subsequent

constructional types in the clause.

b. Principle of Argumental Expansion: the introduction of an L1-CONSTR

node in the LSC typically involves the introduction of at least one

argumental slot in the core. More particularly, in the case of those

constructions serving as the constructional base, the number of arguments

ranges from zero to three; on the other hand, any other further constructional

type usually introduces one new argument.

c. Principle of Constructional Base Restriction: the constructional base can

only be performed by Kernel Constructions or by one-argument

constructional schemata (i.e. A, B, D and F group constructions). Indeed,

these are the only types of constructions allowed to take this position in the

LSC; otherwise, the compliance with the Principle of Constructional

Anchorage would inevitably violate the Principle of Argumental Expansion.

d. Principle of Constructional Unicity: a given type of construction can

occur only once in the same clause.

According to the above four principles, the operation of

constructional merger can now be defined as the binary relation RMerger,

which is logically formalised in (19).

(19) RMerger ⊊ Φ x Ω ∧ ((∃φ ∈ Φ)(∃ω ∈ Ω)(‹φ, ω› ∈ RMerger)) ∧

((φ'RMergerω' ∧ φ''RMergerω'') → (φ' ≠ φ'') ∧ (ω' = ω'')), where Φ

= {c, e} and Ω = {a, b, d, f}

where the variables [a-f] represent the argumental constructions belonging

to the constructional groups [A-F] respectively. In particular, the above

principles are applied to guide the mappings between constructional sets,

since ¬((∀φ ∈ Φ)(∀ω ∈ Ω)(‹φ, ω› ∈ RMerger)). For example, {‹c, d›, ‹e, f›} ∉

RMerger, because two constructions which have the same number of

argumental slots cannot co-occur; or for instance, ‹c, f› ∉ RMerger, because

the schema of any further construction added to the constructional base

should have a higher number of argumental slots than those in the

constructional base. In both examples, the Principles of Constructional

Anchorage and Argumental Expansion could not be jointly complied with.

In the end, the different possibilities of combining constructions are finally

guided by the constructional merger relation, i.e. RMerger = {‹c, a›, ‹c, b›, ‹e,

a›, ‹e, b›, ‹e, d›},31 provided that constraints in constructional schemata are

satisfied. To illustrate, the constructional merger taking place in Figure 10 is

defined as RMerger: John pounded the nail flat into the wall = {‹Transitive-Resultative,

Kernel-2›, ‹Caused-Motion, Kernel-2›}.

 However, although many incompatibilities in constructional co-

occurrence are detected with the previous weight-based distribution method,

global syntactic ambiguity can still persist, so there would be finally more

than one parse tree. At this time, each tree would be provided with a

weighted value as a result of the addition of all the weights corresponding to

the constructions involved in the constructional merger operation.32

Consequently, the winning parse tree is that which has the highest weighted

value.

The idea of creating a weight-based scheme for argumental

constructions was motivated primarily by the existence of psycholinguistic

evidence showing that the human sentence parser can take into account the

frequency of some constructions in order to resolve local ambiguity (cf.

Pickering & Van Gompel 2006). In this regard, our current prototype can be

improved in two key features. Firstly, it would be more effective to apply

the “weight-based priority” from the beginning of the syntactic parsing with

the purpose of minimizing global syntactic ambiguity. In fact, in line with

31 Strictly speaking, constructional merger is an asymmetric relation, since it is always the
new argumental slot which is merged with the constructional base, and not the other way
around.
32 See Table 1.

the development of a psychologically-plausible interactive model of the

sentence processor, we should not allow constraints to be satisfied in two

stages, but we should consistently integrate the various constraint sources

from the very beginning. Secondly, the relative frequency of constructions

belonging to the same group can also be taken into consideration to resolve

syntactic ambiguity, requiring us to perform a corpus-based research to

obtain this probabilistic knowledge. In a nutshell, any improvement in the

syntactic parser should be aimed at minimizing global syntactic ambiguity

by resolving all instances of local structural ambiguity as they arise during

the processing.

At the end of this stage, the winning parse tree is stored in an XML

file. To illustrate, Appendix 1 shows the XML-formatted parse tree for the

sentence “John pounded the nail into the wall”, and Appendix 2 presents the

XSD schema against which XML-formatted parse trees are validated to

check well-formedness.

4.4. Parse tree refinement

This stage is aimed to structure the parse tree à la RRG, in such a way that

we facilitate the building of the graphical representation of the tree33 and the

CLS. This stage consists of two basic tasks, i.e. relocating tree nodes and

33 More particularly, the XML file was mapped to the DOT language in GraphViz
(www.graphviz.org) to draw the directed acyclic graph.

filtering out node attributes, whose XML-based procedures are actually very

similar: both of them have as input the winning XML-formatted parse tree

and support the refinement of that tree in accordance with the knowledge

stored in other XML files. For example, when relocating tree nodes in the

parse tree, (20) provides the system with the following instructions: any

argument (ARG) or subordinated nucleus (NUC-S) introduced by L1-

constructions (CONSTR-L1) must be moved to the core in the clause,

whereas all adjuncts must be placed under the same category of periphery

(PER).

(20) <Nodes>
 <Parent Node=”CONSTR-L1”>
 <Child Target=”CORE”>ARG</Child>
 <Child Target=”CORE”>NUC-S</Child>
 <Child Target=”PER”>ADJUNCT</Child>
 </Parent>
 </Nodes>

For example, when filtering out attributes, (21) is used to identify the

relevant attributes of the argument node (ARG). If the node is accompanied

by non-relevant attributes, then they will be removed from the parse tree.

On the contrary, if a required attribute does not go with the node, then the

search will be performed among its subordinated nodes and, in the case of a

failed attempt, among its superordinates. If the given attribute is finally not

found, then it will be created with a null value.34

34 Since ARTEMIS is still a work-in-progress system, a grammatical feature provided with
a null-value attribute should be understood as a grammatical gap in the computational
implementation of the RRG theory. When ARTEMIS becomes a full-fledged system to
process real-life texts, then null values will be non-existent.

(21) <Node Type=”ARG”>
 <Att>Type</Att>
 <Att>Concept</Att>
 <Att>Role</Att>
 <Att>Macrorole</Att>
 </Node>

XPath is the technology used for the search of elements such as nodes and

attributes.

4.5. CLS extraction

At the final stage, the CLS results from the extraction of the most relevant

semantic units together with their attributes from the XML-formatted

refined tree in the previous stage. To accomplish this stage, we designed an

XSLT35 stylesheet which can define the pattern-matching rules for

transforming the XML document into a bracketed representation of the

CLS, resulting in tasks such as defining the style properties of elements,36

changing the order in which elements appear in the CLS, and filtering some

elements on the basis of a certain property. In other words, the syntax-

driven semantics is so embedded in the parse tree itself, certainly much

more than in the RRG model, that the system will do nothing but remove the

morphosyntactic units of the LSC and relocate the operators according to

their scope. For the formal description of the CLS notation, Appendix 3

35 XSLT stands for “Extensible Stylesheet Language Transformations”.
36 For instance, the FunGramKB concepts are rendered in boldface, and the type and value
of operators in sub- and superscript characters respectively.

presents the context-free grammar written in EBNF37 as well as its graphical

representation.

 To summarize, Appendix 4 shows a fine-grained activity diagram for

the whole process of CLS construction.

4.6. Final remark

At this point, we return to the issue of the linguistic models influencing our

system and focus on the so-called “linking problem”. In this respect,

ARTEMIS adopts a monostratal model of language, but we do not fully

agree with RRG that the relationship between semantic and syntactic

relations should be conditioned by a hierarchy of semantic roles. It is true

that macroroles in the enhanced LSC are identified according to the RRG

privileged syntactic argument selection hierarchy, but these macroroles do

not play a critical role in the syntax-semantics linkage. In fact, they become

irrelevant, but they are still retrieved just in the case that they could play

some role in the linguistic generation process.38 As illustrated in Figure 10,

constructional schemata actually become the cornerstone of the syntax-

semantics interface, so a constructivist approach is adopted in this regard;

indeed, some arguments are directly contributed by the L1-Constructicon.

37 EBNF (Extended Backus-Naur Form) is a standard notational language used to define
context-free grammars formally.
38 Should this not be the case, macroroles would certainly end up disappearing in our
computational model.

On the other hand, lexical entries should be provided with pointers to those

types of constructions in which a given verb can occur, so a functional

projectionist approach is adopted in this regard.

This position is much more in line with the LCM, which intends to

build a bridge between constructivist and projectionist views of language

comprehension. In this model of meaning construction, the notions of

lexical template (i.e. low-level representation of the semantic and syntactic

properties of a predicate) and constructional template (i.e. high-level

representation of the semantic properties of a construction) are essential to

explain the syntax-semantics interface. More particularly, the semantic

interpretation results from a process of lexico-constructional subsumption,

i.e. the unification between a lexical template and a constructional template.

In ARTEMIS, the elaboration of constructional rules also involves a lexico-

constructional subsumption. However, in contrast with the LCM, the lexico-

constructional subsumption in ARTEMIS is not a projection process which

is regulated by internal constraints—e.g. variable suppression or lexical

blocking, among many others (cf. Mairal-Usón & Ruiz de Mendoza 2008),

but it should be simply understood as a process of constructional activation

within the framework of non-monotonic inheritance: that is, when

constructional schemata are activated, in the case of attributes shared by the

AVM of the constructional schema and that of the Core Grammar of the

verb, specific values in the former override default values in the latter.

Therefore, we prefer not to use the term “projection rules” but

“constructional activation rules”, where only some values are projected

from the Lexicon to the Constructicon.

5. Conclusions

In this chapter, we have described ARTEMIS, a proof-of-concept NLP

system which exploits FunGramKB as its knowledge base within the RRG

framework to model the semantic representation of the input text in terms of

a CLS. Although the RRG logical structure has been formally simplified for

the sake of computational efficiency, we have finally achieved a cross-

language semantically-enhanced representation by replacing predicates by

ontological units and introducing the constructional operator, among some

other changes. In fact, we regard constructions as meaning-bearing devices

which play a paramount role in the LSC. Although we have focused this

chapter on argumental constructions, we intend to progressively incorporate

other types of constructional meanings into the CLS, such as implicational,

illocutionary and discursive. Moreover, since ARTEMIS retrieves lexico-

conceptual knowledge from FunGramKB, it will also be possible to exploit

its reasoning engine to reach a deeper level of comprehension through the

COREL scheme derived from the CLS. To conclude, we agree with Guest

(2009) that RRG is a promising theory for extracting sentential meaning

from a computational viewpoint, making this functional model a better

alternative to Head-Phrase Structure Grammar and Dependency Grammar.

6. Acknowledgments

Financial support for this research has been provided by the DGI, Spanish

Ministry of Education and Science, grants FFI2011-29798-C02-01,

FFI2010-17610 and FFI2010-15983. We would like to thank Christopher

Butler for detailed comments on the first draft. Any error is ours.

References

Allen, James F. 1983. Maintaining knowledge about temporal intervals.

Communications of the ACM 26(11): 832-843.

Allen, James F. & Ferguson, George. 1994. Actions and events in interval

temporal logic. Journal of Logic and Computation 4(5): 531-579.

Baldridge, Jason, Morton, Thomas & Bierner, Gann. 2001. The OpenNLP

Toolkit. <http://sharpnlp.codeplex.com> (21 September 2012).

Bird, Steven, Klein, Ewan & Loper, Edward. 2009. 0atural Language

Processing with Python. Sebastopol (California): O’Reilly.

Cooper, Richard P. 2002. Modelling High-Level Cognitive Processes.

Mahwah (New Jersey): Lawrence Erlbaum Associates.

Croft, William. 2001. Radical Construction Grammar. Oxford: Oxford

University Press.

Dowty, David. 1979. Word Meaning and Montague Grammar. Dordrecht:

Reidel.

Earley, Jay. 1970. An efficient context-free parsing algorithm.

Communications of the ACM 13(2): 94-102.

Frazier, Lyn. 1979. On Comprehending Sentences: Syntactic Parsing

Strategies. PhD dissertation, University of Connecticut.

Frazier, Lyn & Fodor, Janet Dean. 1978. The sausage machine: a new two-

stage parsing model. Cognition 6: 1-34.

Goldberg, Adele E. 1995. Constructions: A Construction Grammar

Approach to Argument Structure. Chicago: University of Chicago

Press.

Guest, Elizabeth. 2009. Parsing using the Role and Reference Grammar

paradigm. <http://repository-

intralibrary.leedsmet.ac.uk/open_virtual_file_path/i42n47491t/Parsin

g Using the Role and Reference Grammar Paradigm.pdf> (21

September 2012).

Jackendoff, Ray S. 1990. Semantic Structures. Cambridge (Mass.): MIT

Press.

Jursic, Matjaz, Mozetic, Igor, Erjavec, Tomaz & Lavrac, Nada. 2010.

LemmaGen: multilingual lemmatisation with induced ripple-down

rules. Journal of Universal Computer Science 16(9): 1190-1214.

Mairal-Usón, Ricardo & Periñán-Pascual, Carlos. 2009. The anatomy of the

lexicon component within the framework of a conceptual knowledge

base. Revista Española de Lingüística Aplicada 22: 217-244.

Mairal-Usón, Ricardo & Ruiz de Mendoza, Francisco José. 2008. Internal and

external constraints in meaning construction: the lexicon grammar

continuum. In Estudios de Filología Inglesa: Homenaje a la Dra.

Asunción Alba Pelayo, Laura Alba Juez & María Teresa Gibert

Maceda (eds), 219-237. Madrid: Universidad Nacional de Educación a

Distancia.

Mairal-Usón, Ricardo & Ruiz de Mendoza, Francisco José. 2009. Levels of

description and explanation in meaning construction. In

Deconstructing Constructions, Christopher Butler & Javier Martín

Arista (eds), 153-198. Amsterdam-Philadelphia: John Benjamins.

Michaelis, Laura A. 2003. Word meaning, sentence meaning, and syntactic

meaning. In Cognitive Approaches to Lexical Semantics, Hubert

Cuykens, René Dirven & John R. Taylor (eds.), 93-122. Berlin-New

York: Mouton de Gruyter.

Nirenburg, Sergei & Levin, Lori. 1992. Syntax-driven and ontology-driven

lexical semantics. In Lexical Semantics and Knowledge

Representation: First SIGLEX Workshop, James Pustejovsky &

Sabine Bergler (eds.), 5-20. Berlin-Heidelberg: Springer.

Pelletier, Francis Jeffry. 2012. Holism and compositionality. In The Oxford

Handbook of Compositionality, Markus Werning, Wolfram Hinzen

& Edouard Machery (eds.), 149-174. Oxford: Oxford University

Press.

Periñán-Pascual, Carlos. In press. “Towards a model of constructional

meaning for natural language understanding”. In Linking

Constructions into Functional Linguistics: The Role of Constructions

in RRG Grammars, Brian Nolan & Elke Diedrichsen (eds.).

Amsterdam: John Benjamins.

Periñán-Pascual, Carlos & Arcas-Túnez, Francisco. 2004. Meaning

postulates in a lexico-conceptual knowledge base. In Proceedings of

the 15th International Workshop on Databases and Expert Systems

Applications, 38-42. Los Alamitos: IEEE Computer Society.

Periñán-Pascual, Carlos & Arcas-Túnez, Francisco. 2005. Microconceptual-

Knowledge Spreading in FunGramKB. In Proceedings of the 9th

IASTED International Conference on Artificial Intelligence and Soft

Computing, 239-244. Anaheim-Calgary-Zurich: ACTA Press.

Periñán-Pascual, Carlos & Arcas-Túnez, Francisco. 2007. Cognitive

modules of an NLP knowledge base for language understanding.

Procesamiento del Lenguaje 0atural 39: 197-204.

Periñán-Pascual, Carlos & Arcas-Túnez, Francisco. 2008. A cognitive

approach to qualities for NLP. Procesamiento del Lenguaje 0atural

41: 137-144.

Periñán-Pascual, Carlos & Arcas-Túnez, Francisco. 2010a. Ontological

commitments in FunGramKB. Procesamiento del Lenguaje 0atural

44: 27-34.

Periñán-Pascual, Carlos & Arcas-Túnez, Francisco. 2010b. The architecture

of FunGramKB. In Proceedings of the 7th International Conference

on Language Resources and Evaluation, 2667-2674. Malta:

European Language Resources Association.

Periñán-Pascual, Carlos & Mairal-Usón, Ricardo. 2009. Bringing Role and

Reference Grammar to natural language understanding.

Procesamiento del Lenguaje 0atural 43: 265-273.

Periñán-Pascual, Carlos & Mairal-Usón, Ricardo. 2010. La gramática de

COREL: un lenguaje de representación conceptual. Onomázein 21:

11-45.

Periñán-Pascual, Carlos & Mairal-Usón, Ricardo. 2011. The COHERENT

methodology in FunGramKB. Onomázein 24: 13-33.

Pickering, Martin J. & Van Gompel, Roger P.G. 2006. Syntactic parsing. In

Handbook of Psycholinguistics, Matthew J. Traxler & Morton A.

Gernsbacher (eds.), 455-503. Amsterdam: Elsevier.

Pustejovsky, James. 1991. The Generative Lexicon. Computational

Linguistics 17(4): 409-441.

Rappaport Hovav, Malka & Levin, Beth. 1998. Building verb meanings. In

The Projection of Arguments: Lexical and Compositional Factors,

Miriam Butt & Wilhelm Geuder (eds.), 97-134. Stanford: CSLI

Publications.

Ruiz de Mendoza, Francisco José & Mairal-Usón, Ricardo. 2008. Levels of

description and constraining factors in meaning construction: an

introduction to the Lexical Constructional Model. Folia Linguistica

42(2): 355-400.

Rumbaugh, James, Jacobson, Ivar & Booch, Grady. 1999. The Unified

Modeling Language Reference Manual. Reading (Mass.): Addison-

Wesley.

Sag, Ivan A. 2012. Sign-based Construction Grammar: an informal

synopsis. In Sign-based Construction Grammar, Hans C. Boas &

Ivan Sag (eds.), 69-202. Stanford: CSLI Publications.

Salem, Yasser, Hensman, Arnold & Nolan, Brian. 2008. Towards Arabic to

English machine translation. ITB Journal 17: 20-31.

Uszkoreit, Hans & Zaenen, Annie. 1995. Grammar formalisms. In Survey of

the State of the Art in Human Language Technology, Giovanni

Varile & Antonio Zampolli (eds.), 100-101. Cambridge: Cambridge

University Press.

Van Valin, Robert D. Jr. 2005. Exploring the Syntax-Semantics Interface.

Cambridge: Cambridge University Press.

Van Valin, Robert D. Jr. 2009. Role and Reference Grammar as a

framework for linguistic analysis. In The Oxford Handbook of

Linguistic Analysis, Bernd Heine & Heiko Narrog (eds.), 703-738.

Oxford: Oxford University Press.

Van Valin, Robert D. Jr. & LaPolla, Randy J. 1997. Syntax, Structure,

Meaning and Function. Cambridge: Cambridge University Press.

Vendler, Zeno. 1967. Linguistics in Philosophy. Ithaca: Cornell University

Press.

