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Abstract 

Automatic term extraction has become a priority area of research within corpus 

processing. Despite the extensive literature in this field, there are still some outstanding 

issues that should be dealt with during the construction of term extractors, particularly 

those oriented to support research in terminology and terminography. In this regard, this 

article describes the design and development of DEXTER, an online workbench for the 

extraction of simple and complex terms from domain-specific corpora in English, 

French, Italian and Spanish. In this framework, three issues contribute to placing the 

most important terms in the foreground. First, unlike the elaborate morphosyntactic 

patterns proposed by most previous research, shallow lexical filters have been 

constructed to discard term candidates. Second, a large number of common stopwords 

are automatically detected by means of a method that relies on the IATE database 

together with the frequency distribution of the domain-specific corpus and a general 

corpus. Third, the term-ranking metric, which is grounded on the notions of salience, 
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relevance and cohesion, is guided by the IATE database to display an adequate 

distribution of terms. 

Keywords: terminology, terminography, automatic term extraction, DEXTER 

 

 

1. Introduction 

Nowadays, specialized-knowledge acquisition cannot be conceived without the use of a 

corpus. Discovering the lexical units of a given domain is undoubtedly a complex task 

where sheer introspection, or even the simple analysis of concordances, is often not an 

effective method.
1
 Indeed, standard frequency criteria only serve to extract a general-

purpose vocabulary, thus contributing little to the identification of technical words. This 

article falls within the field of automatic term extraction (ATE), which represents a 

priority area of interest for most industry-of-language service providers. Indeed, ATE 

has two major applications, i.e. as a tool for research and professional purposes (e.g. 

terminologists, translators, interpreters, etc.) or as a component of a knowledge-based 

system (e.g. document classification, information retrieval, text summarization, etc.). 

The first application is the focus of this investigation, and more particularly in relation 

to corpus-based terminology and terminography research. Therefore, our interest lies in 

the development of software for (a) the study of words and phrases that pertain to 

particular areas of specialized knowledge, and (b) the compilation of domain-specific 

lexical units to create language resources such as glossaries or term databases. From this 

approach, an in-depth study of the state of the art in ATE revealed a number of 

                                                           
1
 For the sake of clarity, we restrict the use of "word" to the narrower notion of orthographic word, so an 

ngram is a sequence of n words. Moreover, "lexical unit" refers to a unit of meaning that is realized by 

one or more words, resulting in single-word (simple) and multi-word (complex) lexical units. Whereas all 

lexical units are composed of ngrams (e.g. porphyria cutanea tarda consists of three unigrams, two 

bigrams and one trigram), not all ngrams can be considered as lexical units (e.g. cutanea tarda). Finally, 

lexical units can appear in general or specialized domains. In this latter case, we use "term" to refer to a 

lexical unit that is characteristically associated with a given scientific or technical domain. For example, 

porphyria cutanea tarda is a medical term. 
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overarching requirements that newly-developed term extractors should meet. It should 

be noted that, although it is not unusual for existing ATE systems to meet some of the 

following requirements, all of the requirements can rarely be found in the same system: 

Requirement 1. The system should make use of an adequate statistical measure. Ideally, 

“statistical adequacy” would involve that the system could extract all and only the true 

terms of the domain. Unfortunately, this assumption is so ambitious that it is unlikely to 

be realistic. On the one hand, although reference lists as gold standards are available, it 

is not reliable to evaluate the performance of ATE systems in terms of recall, since 

"such resources are far from exhaustive and not error free" (Vivaldi and Rodríguez 

2007: 237). Consequently, if recall is to be evaluated, then all term candidates have to 

be checked manually, which becomes a time-consuming task. On the other hand, the 

effectiveness of probabilistic measures is closely dependent on the intrinsic 

characteristics of the corpus. Therefore, the adequacy of the metric should be reasonably 

understood as the possibility that the system manages the peculiarities of different 

corpora by outperforming other metrics. In this regard, one of the main purposes of term 

extractors is to significantly reduce the amount of noise in the ranked list, since "the 

more time users spend in scanning through term candidate lists, the less useful the tool 

is” (Thurmair 2003: 6). Thus, a typical way to measure the statistical adequacy consists 

in verifying that little noise (i.e. few false candidates) has been generated with the top-

ranked terms output by the term extractor. 

Requirement 2. The system should extract simple and complex terms. Although most of 

the works in this area still rely on multi-word terminological units (cf. Deane 2005; 

Wermter and Hahn 2005; among many others), “one cannot deny the fact that simple 

terms have a role to play” (Wong, Liu and Bennamoun 2008: 503). In fact, Zhang, Iria, 

Brewster and Ciravegna (2008) showed that single-word terms can be as important as 
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multi-word units and occupy a fairly large proportion in certain domains, so “algorithms 

that ignore single-word terms may cause problems to tasks built on top of ATR 

[Automatic Term Recognition]” (Zhang et al. 2008: 2108). 

Requirement 3. The system should extract the nouns, verbs and adjectives that are used 

to describe a given specialized domain. Most ATE systems have focused exclusively on 

noun phrases, under the assumption that they make up the bulk of the terminological 

inventory. As explained by Justeson and Katz (1995: 9), "judging from data in 

dictionaries of technical vocabulary, the majority of technical terms do consist of more 

than one word; among these, the overwhelming majority are noun phrases, which 

constitute the vast majority of multi-word terminological units in probably all domains". 

Although this assumption still has a deep effect on some current research experiments 

(cf. Paulo and Mamede 2004; Pazienza, Pennacchiotti and Zanzotto 2005; Ittoo, 

Maruster, Wortmann and Bouma 2010; Merkel, Foo and Ahrenberg 2013; Zadeh and 

Handschuh 2014a; Meyers, He, Glass and Babko-Malaya 2015; among others), it is also 

true that “verbs and adjectives, though they have received much less attention, can also 

be domain-specific” (Ahrenberg 2009). 

Requirement 4. The system should be able to be extended to other languages and other 

scientific/technical domains. It is reasonable to assume that this adaptability can be 

favoured if statistical knowledge-poor methods of term extraction are employed, which 

is in line with the natural language processing (NLP) techniques used in information 

retrieval, where simple methods such as stopwords and stemming usually yield more 

significant improvements than higher-level processing, e.g. chunking or parsing, which 

increase processing and even decrease precision (Brants 2004). However, this approach 

breaks away from that of mainstream term extractors, where a hybrid approach 
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combines statistical methods with linguistic methods, where part-of-speech (POS) 

tagging plays a crucial role. 

Requirement 5. The system should be provided with a user-friendly interface that can 

fully integrate the built-in functionalities of corpus management, term extraction, and 

term management, which are required for terminology and terminography research. In 

other words, if you want to go further than a local experiment with a toy 

implementation of the term extractor, you need a number of tools that can support the 

complete workflow of term processing in a single platform. 

In this context, this research led to the design and development of DEXTER 

(Discovering and EXtracting TERminology), an online workbench for the recognition, 

validation and management of the simple and complex terms (namely, unigrams, 

bigrams and trigrams) extracted from non-structured texts in small- and medium-sized 

specialized corpora in English, French, Italian and Spanish.
2
 DEXTER not only 

integrates all of the requirements outlined above but also introduces some 

improvements in the main modules of the ATE process (i.e. preprocessing, extraction, 

recognition, weighting and validation), since “although ATE has been researched for 

more than 20 years, there is still room for improvement” (Conrado, Felippo, Pardo and 

Rezende 2014: 1). The remainder of this article is structured as follows. Section 2 

describes the different stages involved in ATE with DEXTER. Section 3 deals with the 

evaluation of DEXTER in comparison with BioTex, GaleXtract, Termine and 

TermoStat. Finally, Section 4 concludes with a review of the five requirements from 

DEXTER’s perspective. 

 

2. Automatic term extraction in DEXTER 

                                                           
2
 DEXTER, which has been developed in C# with ASP.NET 4.0, is freely accessible from the 

FunGramKB website (http://www.fungramkb.com/nlp.aspx). 
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2.1 Graphical user interface application 

DEXTER has been developed as a Web-based user-interface application, which is not 

confined to term extraction in the strict sense but provides an environment suitable for 

linguistic research, with functionalities such as corpus compilation and textual 

exploration, among many others. Here the ATE process consists of a pipeline of five 

stages: (1) corpus registration, (2) corpus development, (3) candidate extraction, 

including term recognition, (4) term weighting, and (5) term validation and clean-up. To 

illustrate the explanations in this and other sections, an experiment was conducted with 

an English corpus of 200 documents (312,710 tokens), where 1,452 unigrams, 2,143 

bigrams and 711 trigrams were extracted as term candidates. This collection of 

documents, which we will call “sample corpus”, was downloaded from a website whose 

aim is to provide students with basic information about electronics.
3
 

 

2.1.1 Corpus registration 

The domain-specific corpus is manually tagged with descriptors such as the name (e.g. 

Electronics corpus), the language (e.g. English), the content description (e.g. Tutorials 

for engineering students on all aspects of basic electronics), and the true and false 

domain(s), which are selected from the IATE database (InterActive Terminology for 

Europe). With respect to the latter, users must select the “true domains”, i.e. the most 

relevant field(s) of specialized knowledge described in the corpus (e.g. Electrical 

Industry [6621001] and Electronics and Electrical Engineering [6826, 6826001, 

6826002]),
4
 and can also select some "false domains", which serve to discard term 

candidates that, although they are likely to occur in the corpus, pertain to other 

specialized domains (e.g. Chemistry [6811, 6811001, 6811002, 6811004], Computer 

                                                           
3
 http://www.electronics-tutorials.ws 

4
 IATE domain codes are given in brackets. 
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Science [3236001, 3236002], Mechanical Engineering [6821, 6821001, 6821002, 

6821003] and Science [36]). True and false domains play an important role in both term 

recognition and term weighting. 

 

2.1.2 Corpus development 

This stage consists of two actions. First, the corpus is compiled. DEXTER has been 

designed for small and medium-sized corpora (i.e. up to one million tokens). As stated 

by Koester (2010: 68-69), specialized corpora do not need to be “as large as more 

general corpora to yield reliable results”; since specialized corpora are “carefully 

targeted, they are more likely to reliably represent a particular register or genre than 

general corpora”. Another feature of the corpus is its sample size, which is closely 

related to the issue of representativeness. For example, “a corpus of a million words or 

so cannot afford to include whole books which might be up to 100,000 words in length” 

(Hunston, 2008: 165), since such large documents could result in a disproportionate 

composition of the corpus. Although the suitability of a sample size depends on the 

specific task that is undertaken, “experience with samples of 20,000 words has shown 

that on the whole these are sufficiently large to yield statistically reliable results on 

frequency and distribution” (Haan 1992: 3), which helped us determine the maximum 

number of tokens in a single document (i.e. 25,000 tokens). Apart from plain-text files, 

PDF documents and HTML Web pages can also be uploaded. Each document can also 

be manually tagged with descriptors such as the title (e.g. Transistor biasing) and the 

content description (e.g. Transistor base biasing configurations from a single supply 

available for a common emitter amplifier). 

Second, corpus indexation is performed with Lucene.Net (Hatcher, Gospodnetic 

and McCandless 2010)—the C# port of Lucene, one of the most popular open-source 
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library for high-performance information retrieval. Document indexation enables the 

user to retrieve the context of all the words derived from a given stemmed ngram. A 

naïve approach of searching a certain word would have been to sequentially scan each 

text file for the target word, but this rudimentary method could have generated a 

bottleneck in case of a large collection of documents. 

 

2.1.3 Candidate extraction and term recognition 

This stage consists of four actions. First, each document in the corpus is preprocessed. 

Each document is tokenized by a simple analyzer, which splits tokens at non-letter 

characters and then lowercases each token, discarding numbers from the token stream. 

Then, the tokens are processed by the Snowball stemmer, and unigrams, bigrams and 

trigrams are derived from the stems. The default frequency threshold is set to three. As 

usual, a threshold is applied not only to reduce noise but also “to avoid producing a too 

long list that might become a hindrance for the experts evaluating the output” (Marín 

2015: 7). 

 Second, term recognition is performed with IATE, i.e. the identification of 

known terms by comparing the list of candidates with a term database. Today there are a 

number of terminology data banks that are both multidisciplinary and multilingual, such 

as Le grand dictionnaire terminologique,
5
 TERMIUM

6
 or TermSciences.

7
 For a platform 

such as DEXTER, one of the best options of gold standard is IATE, because it provides 

a large coverage of words (i.e. 8.5 million terms) from a high number of domains and 

subdomains (i.e. 21 domains that are hierarchically structured into 649 subdomains) in a 

high number of languages (i.e. 24 languages). The main goal of this term database, 

                                                           
5
 http://www.granddictionnaire.com 

6
 http://www.btb.termiumplus.gc.ca/tpv2alpha/alpha-eng.html 

7
 http://www.termsciences.fr 
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which can be downloaded in the XML-based TermBase eXchange (TBX) format,
8
 is to 

ensure the quality of the terminology employed in the documentation of the EU 

institutions. In this stage, DEXTER can recognize (a) a large number of extracted 

ngrams that pertain to the true domains of the corpus, which are automatically tagged as 

positive candidates, and (b) those ngrams that pertain to the false domains, which are 

eliminated from the term-candidate list. False domains enable DEXTER to deal 

effectively with multi-domain discourse, which is particularly common in scientific and 

technical writing. For instance, in the sample corpus, the system recognized many 

lexical units typically used in other specialized domains, such as cadmium sulphide 

(chemistry), star network (computer science), root mean square (mathematics) or 

absolute position encoder (mechanical engineering). As a result, to make the list of 

ngrams more domain-focused (i.e. electronics), the stems pertaining to these false 

domains (i.e. chemistry, computer science, mathematics and mechanical engineering) 

were discarded just before term weighting, providing that the stem did not belong to 

some true domain. 

 Third, DEXTER makes use of a predefined list of functional stopwords (e.g. for, 

in, the, etc.). Moreover, the system dynamically generates a list of common stopwords 

(e.g. allow, high, know, type, etc.) that is tailor-made for the domain-specific corpus.
9
 

Whereas stopword lists are usually obtained from general corpora (cf. Fox 1990) or 

elaborated for a few scientific domains in a given language (cf. Jacquey, Tutin, Kister, 

Jacques, Hatier and Ollinger 2013), DEXTER is provided with a multilingual and multi-

domain method to automatically discover common stopwords in specialized corpora, as 

explained in Section 2.3.1. 

                                                           
8
 The IATE database was downloaded from http://iate.europa.eu/tbxPageDownload.do. 

9
 For the purpose of brevity, we use the phrase “common stopwords” to refer to the non-functional topic-

neutral words found in a given collection of documents. 
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Finally, a set of lexical filters, which are applied to the stemmed ngrams that 

were not recognized as relevant domain-specific terms in the second step of this stage, 

serves to discard many candidates for further analysis. For example, the following types 

of stemmed ngrams are ignored: 

 

a) Ngrams containing one single character (e.g. D in “In the above circuit, node D is 

chosen as…”) 

b) Ngrams containing one or more non-alphabetical characters (e.g. V1 in “Consider 

two AC voltages, V1 having a peak voltage of …”) 

c) Unigrams matching a functional or common stopword (e.g. call in “These audio 

signal transformers are called ‘matching transformers’…”) 

d) Unigrams derived from words starting with a capital letter, provided that they do not 

belong to the general domain (e.g. Schmitt in “…the higher threshold value of the 

Schmitt trigger…”); this unsophisticated procedure is intended to identify domain-

specific named entities, so a more powerful named-entity recognizer will be used in 

future versions. 

e) Bigrams containing one or two functional stopwords (e.g. the AC in “…an important 

parameter of the AC waveform…”) 

f) Bigrams or trigrams containing at least one common stopword (e.g. short length in 

“…a short length of wire designed to…”) 

g) Trigrams containing a functional stopword at the beginning and/or the end of the 

ngram (e.g. the form of in “…in the form of infra-red radiation.”) 

h) Trigrams containing a functional stopword in the mid-position, provided that the 

stopword is not a preposition (e.g. volt or amp in “…the signal waveform measured 

in volts or amps.”) 
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It should be noted that these shallow lexical filters cannot be equated to standard 

grammatical patterns used for term-candidate detection (cf. Justeson and Katz 1995), 

since the former do not actually require that the content of the corpus be annotated by 

POS taggers or parsers. As a result, the above lexical filters can be extended to other 

languages more easily than grammatical-pattern matching techniques, which are heavily 

language-dependent. Therefore, DEXTER does not adopt a traditional hybrid approach 

to term extraction, since the linguistic properties of words are not taken into account. 

 

2.1.4 Term weighting 

DEXTER employs a parameterized composite metric called SRC (Periñán-Pascual 

2015), which is grounded on the notions of salience (S), relevance (R) and cohesion 

(C): 

(1) 

( ) ( ) ( ) ( )SRC g S g R g C gα β γ= ∗ + ∗ + ∗  

where g is a stemmed ngram, and α, β and γ are user-adjustable coefficients. The user 

can specify the value of each of the three coefficients, or the system itself can discover 

the “best” weights for these parameters. The SRC metric and its application for term 

extraction are described in more detail in Section 2.3.2. 

 

2.1.5 Term validation and candidate clean-up 

Term weighting outputs an inventory of SRC-ranked candidates that still requires that 

users eliminate irrelevant ngrams. As stated by Oakes (1998), deleting false positives is 

a much simpler task than creating the whole list of terms manually, and this validation 

task becomes much easier when some of the terms have already been recognized with 
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the help of a term database (e.g. IATE). For this reason, it can be said that DEXTER 

adopts a hybrid approach to the evaluation of term candidates. The semi-automatic 

process of term evaluation is further described in Section 2.3.3. 

 

2.2. Web service 

DEXTER has also been developed as a SOAP/WSDL-based Web service through 

which you can upload a zipped corpus of TXT documents, together with information 

about the language and the true and false domains of the corpus. In this case, the system 

provides a limited set of the features available in the graphical user interface (GUI) 

application, resulting in an ATE method that consists of only two stages: (1) candidate 

extraction, including term recognition, and (2) term weighting, as described in Figure 1. 

Both stages were briefly outlined above. Detailed descriptions of the actions [E] and [G] 

are given in Section 2.3.1 and Section 2.3.2 respectively. 
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Figure 1. DEXTER Web service: workflow of term extraction. 

 

2.3. Some issues on DEXTER 

After a brief description of the stages involved in the term-extraction process within 

DEXTER, this section provides a detailed account of its most innovative aspects. 

 

2.3.1. The removal of stopwords 
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A stopword list is a valuable resource in text-data analysis in general, and in 

information retrieval, information extraction, document clustering and document 

categorization in particular. Stopwords are “words having no significant semantic 

relation to the context in which they exist” (Khosrow-Pour 2009: 3112), so they should 

be removed before processing starts in order to achieve greater effectiveness. The 

selection of this type of words actually becomes a crucial factor in term extraction, since 

“proper choice and construction of a stoplist can affect results in a way that depends on 

the task at hand” (Sinka and Corne 2003: 401). However, despite their importance, 

stopwords are not so carefully selected as would be expected. 

 In this search for non-significant words, stopword lists usually consist of two 

categories of words: (a) functional words, and (b) common words. The task to discover 

functional words is a non-issue, since they can be easily obtained from the grammar of 

the language. For example, in the case of (a) in DEXTER, 454 stems were detected for 

English, including not only functional words (e.g. articles, conjunctions, determiners, 

prepositions and pronouns, among others) but also Arabic and Roman numerals and 

common abbreviations used in professional and academic documents (e.g. i.e., c.f., etc 

or et al). In the case of (b), however, there is no generally-accepted list of non-

informative words for every language. There are a number of stopword lists scattered 

over the Web, but they tend to include primarily functional words. Moreover, stopword 

lists have been traditionally hand-crafted from the author's experience. This situation is 

further compounded by data obsolescence, as illustrated by one of the most popular 

stopword lists (cf. Fox 1990), which was defined from the Brown Corpus of English 

(Francis and Kučera 1982) more than twenty-five years ago. In this context, we 

developed an adaptive method to automatically identify stopwords in domain-specific 

corpora. This method is described in the remainder of this section. 
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 In the last decade, most of the NLP research including some ATE component 

has employed stopword lists that were constructed from one of the following methods: 

 

• a multilingual and multi-domain method, which automatically generates 

stopword lists for different languages by means of entropy-based metrics applied 

to specialized corpora (cf. Sinka and Corne 2003; Zou, Wang, Deng, Han and 

Wang 2006; Alajmi, Saad and Darwish 2012; Asubiaro 2013), 

• a monolingual and multi-domain method, which provides a stopword list derived 

from the general corpus of a given language; in this regard, Salton (1971) and 

Fox (1990) have been the most popular lists for English (cf. Karystianis, Buchan 

and Nenadic 2014; Zadeh and Handschuh 2014b; Sajjacholapunt and Joy 2015; 

Conde, Larrañaga, Arruarte, Elorriaga and Roth 2016),
10

 or 

• a monolingual and single-domain method, where the stopword list is intended 

for a given specialized domain in a given language (cf. Jacquey, Tutin, Kister, 

Jacques, Hatier and Ollinger 2013), thus substantially restricting the scope of 

applicability. 

 

Our interest lies primarily in the first type of method, since this research has been 

developed in a multilingual environment that was designed to process document 

collections from a wide variety of scientific and technical domains. As shown below, 

however, a more effective approach to stopword detection is required. 

Research on the automatic generation of stopword lists usually aims to measure 

the importance of a term within a document collection by means of entropy. In this 

                                                           
10

 A repository of general stopword lists for various languages can be found at 

http://members.unine.ch/jacques.savoy/clef/index.html, where the lists for other languages than English 

were constructed following the guidelines described in Fox (1990). 
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regard, the method typically used to calculate the normalized value of entropy is that of 

Lochbaum and Streeter (1989: 672): 

(2) 

2

1
log

k
k

noise
entropy

NDocs
= −  

where noise is calculated in turn following Salton and McGill (1983: 65): 

(3) 

2

1

log
NDocs

ik k
k

i k ik

Freq Totalfreq
noise

Totalfreq Freq=

=   

where NDocs equals the total number of documents, Freqi,k is the frequency of the kth 

term in the ith document, and Totalfreqk is the total frequency with which termk occurs 

in all documents of the corpus. Therefore, the higher entropy the word has, the less 

information the word is likely to reveal, and so it is more likely to be seen as a 

stopword. In the equation (3), noise measures the concentration of a given term rather 

than occurrence counts (Harman 1986), i.e. words with high frequency in many 

documents of the collection will have low entropy. However, following the tf-idf metric 

(Salton and Buckley 1988), which measures the importance of a word in a collection of 

documents, when a given term occurs in many documents, it has a low discriminating 

power. Therefore, entropy calculations are biased towards unduly low entropies for 

general-purpose words that are frequent in a large number of documents within a 

domain-specific corpus. For example, this problem can be found with the words that 

have the lowest entropy values in the sample corpus, including technical terms such as 

circuit (0.07819), voltage (0.09429) and current (0.11117), but also common words 

such as use (0.04712), look (0.08761), call (0.09287) and give (0.10010). 

As can be concluded from the above, entropy is not a reliable metric to 

discriminate common stopwords in specialized corpora, so we chose to develop a 
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method based on the distribution of word frequencies in a general corpus. In particular, 

we used Sun, Shaw and Davis's (1999: 285) transition point as “a threshold value 

establishing a mark between high-frequency and low-frequency words”, which can be 

predicted with the following equation: 

(4) 

n D=  

where D is the number of distinct word forms in a document collection. As “the 

frequency of word occurrence in an article furnishes a useful measurement of word 

significance” (Luhn 1958: 160), this transition point can be used to distinguish between 

significant and non-significant words, thus contributing to the recognition of common 

stopwords in domain-specific corpora. To this end, a word-frequency list derived from a 

general corpus was provided for each of the languages in the system. In this case, the 

Leipzig Corpora Collection (Quasthoff, Richter and Biemann 2006; Biemann, Heyer, 

Quasthoff and Richter 2007) became a highly valuable resource, since it contains 

corpora of similar size and content in 110 languages. More specifically, we downloaded 

the 1-million-sentence corpora of English, French, Italian and Spanish that were 

compiled in 2010 from newspaper texts.
11

 For the sake of clarity, the stopword 

identification process is illustrated only with the English corpus, which contains 

16,949,229 tokens and 114,229 word forms. However, the same tasks were performed 

with the other general corpora. Furthermore, to facilitate understanding of the method, 

the DEXTER database scheme can be formally characterized as follows: 

(5) 

                                                           
11

 http://corpora.uni-leipzig.de/download.html 
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{ }( )
{ }( )

{ }( )
{ }( )
{ }( )
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S
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=  
 
 
 
  

 

A database scheme D := {R1, …, Rn} is usually defined as a set of relation schemes, 

where a relation scheme R;{A1, …, An} consists of a finite set of attributes. For 

example, CORPUSgen and CORPUSspe refer to the general corpus (46,128 stems) and 

the specialized corpus (3,330 stems) respectively, STOPfun is the list of functional 

stopwords (454 stems), and IATEcon and IATEter hold 1,842,937 concepts and 256,502 

English stemmed unigrams categorized by the IATE database. Moreover, given S ⊆ R, 

let t↓{S} denote the restriction of a tuple t over R on S. For example, if the relation 

scheme is CORPUSgen;{STEM, FREQ} and g = (transistor, 1196) is a tuple over 

CORPUSgen, then g↓{STEM} = (transistor). The remaining symbols in (5)-(10) are used 

in the standard notation for set theory and symbolic logic. The complexity of the actual 

database design is certainly underspecified in the scheme (5), which includes only those 

relations that are relevant for the issues of this section. 

 The first point to make is that DEXTER takes the stem as the minimum unit of 

processing, so the inventory of word forms in the general corpus was reduced to 46,128 

stems.
12

 Thus, CORPUSgen held these stems and their frequencies. It was found that the 

transition point n was 215 for this distribution of stemmed unigrams, so DEXTER 

selected all the non-functional stems whose frequency was within the range from n back 

to rank 1. Formally, this can be expressed as in the function (6), i.e. the value of STEM 

in every tuple g of CORPUSgen where FREQ in g is greater or equal to 215 and there 

                                                           
12

 Named entities were removed from consideration. 
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exists no tuple f in STOPfun that contains the value of STEM, where COMMONgen 

returned 4,195 stems. 

(6) 

{ } ( )
( )

( ) ( ) ( )( )

STEM | DEXTER CORPUS

COMMON : FREQ 215

DEXTER STOP : STEM STEM

gen

gen

fun

g g

g

f f g
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= ≥ ∧ 
 
¬ ∃ ∈ =  

 

On the other hand, the same procedure was applied to the sample corpus (i.e. 

CORPUSspe), where n was 64. In this case, COMMONspe returned 358 stems, as 

described in the function (7), i.e. the value of STEM in every tuple s of CORPUSspe 

where FREQ in s is greater or equal to 64 and there exists no tuple f in STOPfun that 

contains the value of STEM. 

(7) 

{ } ( )
( )

( ) ( ) ( )( )

STEM | s DEXTER CORPUS

COMMON : FREQ 64

DEXTER STOP : STEM STEM

spe

spe

fun

s

s

f f s

 ↓ ∈ ∧
 
 

= ≥ ∧ 
 
¬ ∃ ∈ =  

 

It should be noted that this adaptive procedure to discover common stopwords does only 

take into account stemmed unigrams, because they are the ones used as the building 

blocks in lexical filters, which in turn allow the system to discard not only unigrams but 

also bigrams and trigrams before term weighting. 

At this point, it is worthwhile to recall that, when the sample corpus was 

registered, some descriptors were provided (cf. Section 2.1.1). For example, the most-

relevant IATE domains manually chosen for the sample corpus were Electrical Industry 

[6621001], Electronics and Electrical Engineering [6826], Electrical Engineering 

[6826001] and Electronics Industry [6826002]. Therefore, to complete the remaining 

tasks, it was necessary to identify the 6,863 stems pertaining to such "true domains" in 
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IATE, as described in the function (8), i.e. the value of STEM in every tuple t of IATEter 

where there exists a tuple c in IATEcon whose ID_CONCEPT is the same as 

ID_CONCEPT in t and ID_DOMAIN in c is 6621001, 6826, 6826001 or 6826002. 

(8) 

{ } ( )

( )
( ) ( )

( )

STEM | t DEXTER IATE

DEXTER IATE :
IATE :

ID_CONCEPT ID_CONCEPT

6621001,6826,
ID_DOMAIN

6826001,6826002

ter

con

electro

t

c

c t

c

 ↓ ∈
 

  
  ∃ ∈  =   ∧ = ∧  

    ∈  
    

 

At this stage, the system has five sets available—i.e. CORPUSgen, COMMONgen, 

CORPUSspe, COMMONspe, and IATEelectro, where COMMON CORPUS
gen gen

⊂  and 

COMMON CORPUS
spe spe

⊂ . The core issue now is to decide how these sets can be 

used to recognize most of the common stopwords in the sample corpus (i.e. STOPcom). 

In this regard, two possible methods can be applied, which return the sets consisting of 

all the stems that occur in both COMMONgen and the set resulting from the stems of 

COMMONspe (9a) or CORPUSspe (9b) that do not belong to IATEelectro. 

(9a) 

( )STOP' COMMON COMMON IATEcom gen spe electro= ∩ −  

(9b) 

( )STOP'' COMMON CORPUS IATEcom gen spe electro= ∩ −  

More specifically, these two methods correspond to the functions (10a) and (10b) 

respectively, which return the value of STEM in every tuple r of COMMONspe (10a) or 

CORPUSspe (10b) providing that there exists a tuple g in COMMONgen that contains the 

value of STEM but there exists no tuple i in IATEelectro that contains the value of STEM. 

(10a) 
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(10b) 

{ }

( )
( )

( ) ( )

( )
( ) ( )

DEXTER CORPUS

DEXTER COMMON :
STOP'' : STEM

STEM STEM

DEXTER IATE :

STEM STEM

spe

gen

com

electro

r

g
r

g r

i

i r

 
 

∈ ∧ 
 

 ∃ ∈  
 = ↓ ∧  =  

 
∃ ∈  

¬   =   

 

Both methods are based on the same two premises. On the one hand, it can be assumed 

that the stopwords in the sample corpus should be derived from the top-ranked words in 

the general corpus. The next issue to be considered is the search space in the sample 

corpus, i.e. COMMONspe in the function (10a) or CORPUSspe in the function (10b). 

Indeed, this is a critical decision, since the effectiveness of term extraction is closely 

related to the aggressivity of candidate-space reduction by stopwords. For example, the 

functions (10a) and (10b) resulted in |STOP'com| = 114 and |STOP''com| = 942 

respectively. Both sets were manually reviewed for evaluation, whose results are 

displayed in Table 1. 

common stopwords precision recall F-score 

STOP'com 0.98245 0.12055 0.21212 

STOP''com 0.98619 1.00000 0.99305 

Table 1. Evaluation of stopwords for DEXTER. 
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It should be noticed that recall was evaluated by taking into account all stems in both 

stopword lists that were not related to the given specialized domain; considering that 

STOP' STOP''
com com

⊆ , then the latter has no false negatives. Table 1 demonstrates that 

STOP''com, i.e. the most aggressive stopword-removal method, was actually the most 

effective one. 

 On the other hand, it is also reasonable to believe that stopwords can only be 

found among the stems that do not belong to any of the IATE true domains of the 

sample corpus. This assumption raises a non-trivial issue, since neonyms are not the 

only type of term to appear in domain-specific corpora. According to ISO 704 (2009), 

terms are formed by applying one of the following methods: (a) creating neoterms (i.e. 

newly coined technical or scientific words and phrases), (b) using forms that exist in the 

general language (e.g. through processes such as conversion, terminologization, 

semantic transfer and transdisciplinary borrowing), or (c) translingual borrowing (i.e. 

existing terms in one language can be introduced into another language). Therefore, it 

was found that terminologized words such as face, state or turn (Table 2), which were 

all present in both COMMONgen and CORPUSspe, became a major source of error that 

was eliminated by the term database. Indeed, if the IATE-based component of the 

methods (9a) and (9b) had been ignored, then |STOP'com| = 263 and |STOP''com| = 1438, 

but the error rates would have been 0.57414 and 0.35396 respectively. 

term Definition from IATE (Electronics and Electrical Engineering) 

face the transparent end of the cone through which the image is viewed 

or projected 

state the assigned range of voltage, current, etc., corresponding to one of 

the distinct recognisable conditions of a digital signal 

turn a basic coil element which forms a single conducting loop 
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comprising one insulated conductor 

Table 2. Instances of terminologization. 

It should be recalled that the goal is not to automatically build a stopword list for a 

given specialized domain but only to discover the stopwords that are present in a given 

domain-specific corpus. To this end, the next task was to evaluate this adaptive method 

against the static method of applying a list of 571 stopwords used in the SMART 

information retrieval system (Salton 1971) and a list of 421 stopwords proposed by Fox 

(1990). In this case, the number of stems from non-functional words was 942 for 

DEXTERstop_com (or STOP''com), 163 for SMARTstop_com and 89 for FOXstop_com. 

Assuming that the system should ideally detect all and only those stems in these three 

lists that are not relevant to the sample corpus, the evaluation of DEXTER, SMART and 

FOX provided the results shown in Table 3. 

common stopwords precision recall F-score 

DEXTER 0.98619 0.90634 0.94458 

SMART 0.98773 0.15707 0.23869 

FOX 0.96629 0.08390 0.14333 

Table 3. Evaluation of stopword lists. 

This experiment demonstrates that our stopword-removal method is not only the most 

aggressive but also the most effective, i.e. high precision and recall with respect to other 

stopword lists. 

Finally, we can assess the impact that DEXTERstop_com has on the processing of 

the sample corpus. In this regard, we highlight the capacity of our method to 

substantially reduce the number of irrelevant term candidates, contributing ultimately to 

the increase in precision. It should be recalled that two of the lexical filters used by 

DEXTER are based on common stopwords; particularly, (a) the unigrams that match a 
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common stopword and (b) the bigrams or trigrams that contain at least one common 

stopword are eliminated. Suppose that neither of these two lexical filters is applied. In 

this case, the inventory of candidates would have increased by 39.34% for unigrams 

(i.e. from 1,452 to 2,394 candidates), 27.03% for bigrams (i.e. from 2,143 to 2,937 

candidates) and 50.03% for trigrams (i.e. from 711 to 1,423 candidates). Figure 2 shows 

the distribution of the common stopwords as unigrams or as part of bigrams and 

trigrams in the sample corpus. In the range [1-200], for example, 24 unigrams (e.g. 

calculate, equation or symbol) would have been recognized as common stopwords, and 

64 bigrams (e.g. common use, gate symbol or previous tutorial) and 97 trigrams (e.g. 

amount of current, ideal for use, nearest preferred value or temporary storage device) 

would have consisted of one or more common stopwords. Considering that none of 

these unigrams and bigrams and only eight of the trigrams (i.e. current-limiting resistor, 

free-wheeling diode, high-pass filter, high-wave rectifier, liquid-crystal display, low-

pass filter, magneto-motive force and push-pull amplifier) are true terms, these 

stopwords would have contributed 0.12, 0.32 and 0.44 to the false-discovery rate in the 

top-ranked 200 unigrams, bigrams and trigrams respectively, affecting the precision in 

this range of candidates. 

 

Figure 2. Distribution of common words. 
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Therefore, it can be concluded that DEXTER is provided with an effective stopword-

detection method that can be adapted not to a few large areas of knowledge (e.g. 

economics, law, science or technology) but to the whole range of highly-specialized 

fields of expertise (e.g. civil law, accounting system, space science or mechanical 

engineering) in twenty-four languages that are represented in IATE. 

 

2.3.2. The SRC metric 

The research literature has demonstrated that the combination of multiple ATE 

algorithms tends to outperform most of the methods that consider only one statistical 

feature (cf. Zhang et al. 2008; Fedorenko, Astrakhantsev and Turdakov 2013). Indeed, 

the recent trend does not seek to devise new measures for unithood and/or termhood but 

to combine statistical features effectively, where: 

 

‘Unithood’ refers to the degree of strength or stability of syntagmatic 

combinations or collocations. (…) On the other hand, termhood refers to the 

degree that a linguistic unit is related to (or more straightforwardly, 

represents) domain-specific concepts. (Kageura and Umino 1996: 260-261) 

 

Moreover, a metric with adjustable parameters allows the system to accommodate to the 

configuration of the document collection. However, unlike for most of the research in 

ATE, where single metrics are usually combined indiscriminately to produce the best 

results, SRC is grounded on the theoretical principles of salience, relevance and 

cohesion. Periñán-Pascual (2015) presented a detailed description of these 

terminological features. 
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On the one hand, one of the pillars of SRC is the notion of salience, which is 

based on the termhood measure tf-idf (Salton, Wong and Yang 1975; Salton, Yang and 

Yu 1975; Salton and Buckley 1988), i.e. the weight of a term is determined by the 

relative frequency of the term in a certain document (or term frequency, i.e. tf) 

compared with the inverse proportion of that term in the whole document collection (or 

inverse document frequency, i.e. idf). This decision is supported by the fact that the task 

of automatic document indexation has a clear point in common with that of automatic 

term extraction, since the keywords employed to index a given domain-specific 

document are usually perceived as terminological units (Pazienza et al. 2005). In this 

regard, the two most popular weighting measures in automatic keyword extraction are 

tf-idf and Okapi BM25 (Robertson, Walker and Beaulieu 1998). Thus, the salience of 

the stemmed ngram g in the document d is calculated in DEXTER by applying the 

following formula: 

(11a) 

( ) ( ) ( )( )
d

S g TF g IDF g NORM g= ∗ ∗  

(11b) 

( ) ( )d
TF g f g=  

(11c) 

( )
( )

( )1 log , where 0T
N

IDF g df g
df g

 
= + >  

 
 

(11d) 

( )
( ) ( )( )2

1

g d

NORM g

TF g IDF g
∈

=
×

 

where fd(g) is the number of occurrences of g in d, NT is the number of documents in the 

target corpus, and df(g) is the number of documents in which the ngram appears in the 
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target corpus. The normalization factor, which makes the salience index range from 0 to 

1, is calculated on the basis of the type of ngram. For example, the weight of a certain 

bigram in a given document is normalized by calculating the weights of all and only the 

bigrams in the same document. 

The rationale for the three components of the equation (11) is described as 

follows. First, TF(g) serves to justify the fact that more weight is given to those ngrams 

that appear many times in a given document. Second, IDF(g) rewards those ngrams that 

are concentrated just in a few documents of the corpus. Thus, the value of a rare ngram 

in the corpus is high, whereas the value of a frequent ngram is low; in other words, less 

weight is given to ngrams that appear in many documents. Third, the document size is a 

parameter which can dramatically affect the calculation of weights, since (a) long 

documents usually use the same ngrams repeatedly, and (b) long documents have 

numerous different ngrams (Singhal, Buckley and Mitra 1996). Therefore, NORM(g), 

i.e. document length normalization of ngram weights, is used to remove the advantage 

of long documents: less weight is given to documents that contain many ngrams. In 

other words, the normalization factor makes all documents be treated equally important 

regardless of their size. 

The salience of ngrams with respect to the whole target corpus, and not just to a 

single document, can be calculated as follows: 

(12) 

( )
( )

( )( )
2
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j T
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∈
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Again, the normalization factor of this formula only takes into account ngrams of the 

same type. 
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 On the other hand, salience is combined with a measure that quantifies the 

relevance of ngrams through the contrastive analysis between the target corpus and a 

reference corpus. Salience measures the prevalence of the term in a particular target 

domain, but it does not serve to reflect the tendency of term usage across different 

domains, that is, the relevance of the term. In this context, relevance is calculated in 

DEXTER as follows, which results from an adaptation of Ahmad, Gillam and 

Tostevin’s weirdness (2000): 

(13a) 

( ) ( )
( )

'' T

R

P g
R g

P g
=  

(13b) 

( ) ( ) ( )
( )

, iff 1;otherwise,
i

g
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T T

T T
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P g g P g

CP CP

∈
= = =

∏
 

(13c) 

( ) ( ) ( )
( )

, iff 1;otherwise,
i

g
R ik gR

R R

R R
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P g g P g
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∈
= = =
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where fT(g) and fR(g) represent the frequency of the stemmed ngram g in the target 

corpus and the reference corpus respectively, fT(k) and fR(k) represent the frequency of a 

given lexical item in g with respect to the target corpus and the reference corpus 

respectively, |CPT| and |CPR| represent the total number of words in the target corpus 

and the reference corpus respectively, and |g| is the number of lexical items included in 

the ngram. In this setting, if an ngram is used more frequently in the domain of the 

target corpus than in the domain of the reference corpus, then the relevance index of the 

ngram is greater than 1, and conversely. It should also be noticed that if the ngram does 

not occur in CPR, then fR(g) = 1. The relevance of complex ngrams is calculated on the 
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basis of the geometric mean of each lexical item within the ngram. In this way, the 

metric can minimize the effects of extremely small or large values in a skewed 

frequency distribution of the items within the multi-word ngram. The relevance index is 

normalized with the following equation: 

(14) 

( )
( )( )''

2

1
1

log 2
R g

R g
= −

+
 

Finally, the notion of cohesion was introduced to determine the unithood of complex 

ngrams. Therefore, whereas salience and relevance serve to measure termhood, 

cohesion is aimed at quantifying the degree of stability of bigrams and trigrams. 

Although many association measures have been employed for unithood, such as Φ
2
 

(Gale and Church 1991), χ
2
 (Nagao, Mizutani and Ikeda 1976), cubic mutual 

information (Vivaldi, Màrquez and Rodríguez 2001), Dice coefficient (Smadja, 

McKeown and Hatzivassiloglou 1996), log likelihood (Dunning 1994), log odds ratio 

(Everitt 1992), mutual expectation (Silva, Dias, Guilloré and Lopes 1999), (pointwise) 

mutual information (Church and Hanks 1990), symmetric conditional probability (Silva 

and Lopes 1999) or t-score (Church, Gale, Hanks and Hindle 1991), Park, Byrd and 

Boguraev (2002: 5) reminded us that these measures have two major drawbacks: 

 

First, they evaluate the degree of association between two units and need to 

apply special techniques to calculate the association of terms with more than 

two words (…). Second, these measures tend to give higher values for low 

frequency terms, especially mutual information. 

 

Moreover, Korkontzelos, Klapaftis and Manandhar (2008: 249) showed that: 
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approaches which take into consideration the nestedness of a candidate term 

into others (…) have in general superior performance over methods which 

measure the strength of association among the tokens of a multi-word 

candidate term. 

 

In this regard, one of our first options was to consider C-value (Frantzi and Ananiadou 

1996; Frantzi, Ananiadou and Mima 2000), which is calculated as follows: 

(15a) 

�-value	
� = log�|
| ∗ ��	
�, iff 
 is not nested 

(15b) 

�-value	
� = log�|
| ∗ 	��	
� − ���	
��, otherwise 

(15c) 

���	
� =
∑ ��	��� ∈ ��

|��|
 

where |g| is the number of lexical items included in the stemmed ngram g, being |g| > 1, 

fT(g) represents the frequency of g in the target corpus, and Sg is the set of longer term 

candidates that contain g. On the one hand, |g| plays a key role: a longer ngram 

appearing n times in a corpus has a higher score than a shorter ngram appearing n times 

in the same corpus, since it is less probable that the longer ngram will occur more 

frequently than the shorter one. On the other hand, if g appears as nested, the equation 

(15c) serves to quantify nestedness as the degree of independence of g; in other words, 

the greater the number of longer ngrams in which g appears as nested, the smaller the 

independence of g. 
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 However, C-value presents a problem in the weighting of bigrams. In particular, 

in case of a bigram not appearing as a nested sequence of longer ngrams, C-value is 

equal to the frequency of the bigram, since log2(2) = 1 and the NST component is not 

taken into consideration. In this context, C-value is incapable of adequately measuring 

the unithood of the bigrams that do not occur as part of longer ngrams in the target 

corpus, being unable to discriminate complex terms from recurrent co-occurrences of 

unigrams with their collocates. It should be noted that most of the research with C-value 

has focused on long term candidates in the medical domain, where 4-gram and even 5-

gram candidates are relatively frequent, e.g. adenoid cystic basal cell carcinoma (cf. 

Frantzi et al. 2000). However, this degree of complexity is certainly infrequent in some 

other specialized domains. 

In the light of this evidence, cohesion is calculated in DEXTER as follows, 

which results from an adaptation of Park et al.’s Term Cohesion (2002): 

(16a) 

( ) ( )
( )
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(16b) 
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where fT(g) is the frequency of the stemmed ngram g in the target corpus, fT(k) is the 

frequency of a given lexical item in g with respect to the target corpus, and |g| is the 

number of items in g. Cohesion takes into account both the frequency of g and the 

frequency of the items that compose g. More particularly, cohesion is high when the 

items that compose the ngram are more frequently found within the ngram than alone in 

texts. In this line, we propose that the logarithmic component should not be included 
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when fT(g) = 1; otherwise, regardless of the values in the other components of this 

measure, cohesion will always be 0 in these cases. As with the relevance metric, the 

geometric mean in (16a) smooths the result in a frequency distribution where extreme 

values can be present. Cohesion values are also normalized in a manner similar to those 

of relevance: 

(17) 

( )
( )( )''
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Therefore, DEXTER integrates the above terminological features through the following 

SRC equation: 

(18a) 

( ) ( ) ( )SRC g termhood g unithood g= +  

(18b) 

( ) ( ) ( )termhood g S g R gα β= ∗ + ∗  

(18c) 

( )
( )

0, iff 1

, iff 1

g
unithood g

C g gγ

 =  
=  

∗ >  
 

where g is a stemmed ngram, and the coefficients α, β and γ are user-adjustable, 

providing that α + β = 1 for unigrams and α + β + γ = 1 for complex ngrams. As 

explained above, S(g), R(g) and C(g) outcome normalized values. 

 Many researchers agree that “it is reasonable to expect that there will be no 

‘best’ ATR [Automatic Term Recognition] method which would outperform others on 

all data sets and in all circumstances” (Knoth, Schmidt, Smrz and Zdráhal 2009: 84), so 

it is also reasonable to expect that there will be no predefined combination of constant 

values in SRC which would outperform others on all data sets and in all circumstances. 
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In this regard, DEXTER can automatically discover the most suitable weights for the 

SRC coefficients after term recognition with IATE. Thus, taking into account all the 

permutations of these coefficients, the system gets the combination that provides (a) the 

highest precision with the top-ranked 200 ngrams and (b) the most gradual distribution 

of the terms with respect to four cut-off points (i.e. 50, 100, 150 and 200) along the top-

ranked 200 ngrams. In particular, DEXTER examines eleven permutations of the 

coefficients to calculate the best distribution of unigrams; and in the case of bigrams or 

trigrams, the permutations are sixty-six. This task can be performed only when the 

ngrams found in the IATE true domains have been automatically tagged as positive 

candidates. For example, Table 4 shows how terms are distributed among the unigrams 

of the four ranges in the sample corpus before human validation. 

S-R 1-50 51-100 101-150 151-200 total 

1.0-0.0 49 45 45 40 179 

0.9-0.1 48 41 40 31 160 

0.8-0.2 46 37 34 28 145 

0.7-0.3 46 33 24 27 130 

0.6-0.4 39 30 26 22 117 

0.5-0.5 37 26 22 22 107 

0.4-0.6 37 22 20 20 99 

0.3-0.7 35 21 20 19 95 

0.2-0.8 32 20 19 19 90 

0.1-0.9 29 20 20 19 88 

0.0-1.0 26 21 21 14 82 

Table 4. SRC coefficients and term distributions (sample corpus). 
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In this case, DEXTER easily discovers that the highest precision is obtained with the 

first combination in Table 4, i.e. [α = 1; β = 0]. However, when there is no single 

winning combination, the next step consists in determining which distribution shows the 

most gradual distribution of the terms along the top-ranked 200 ngrams. 

The assumption of the gradual distribution of terms is based on what Pazienza et 

al. (2005: 270) described as “the power of each measure in discriminating true and false 

terms”, i.e. true terms should be assigned to the highest positions in the rank, while the 

remaining false terms concentrate closer to the bottom of the list. Consequently, 

although the values of the SRC coefficients can be determined in part by the gradual 

distribution of only the top-ranked 200 candidates, a decreasing precision trend is 

expected to be shown in the remaining candidates, so that the discriminating power of 

the metric produces a significant ranking. In DEXTER, this notion of "gradual 

distribution of terms" plays a key role when the permutations of the values of the SRC 

coefficients do not result in a winning combination. One of the most logical choices was 

initially to use a measure based on the ranks of data. For example, non-parametric 

measures of rank correlation such as Gamma, Kendall and Spearman could have served 

to determine the strength of the relationship between the rank (i.e. the cut-off point) and 

the number of terms that were detected in each rank. However, we soon realized that 

these measures failed to achieve their goal. By way of example, suppose that DEXTER 

finds ten combinations of the α, β and γ values that yield the same highest precision, e.g. 

140 terms have been recognized by IATE among the top 200 SRC-ranked ngrams. In 

this hypothetical scenario, Table 5 shows the scores derived from the rank correlation 

measures, where the resulting distributions have been labelled from A to J. 

 1-50 51-100 101-150 151-200 Gamma Kendall Spearman 

A 37 36 33 34 -0.667 -0.667 -0.800 
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B 36 37 34 33 -0.667 -0.667 -0.800 

C 34 34 34 38 -1.000 -0.707 -0.775 

D 32 36 36 36 -1.000 -0.707 -0.775 

E 37 34 33 36 -0.333 -0.333 -0.400 

F 37 33 36 34 -0.333 -0.333 -0.400 

G 36 34 37 33 -0.333 -0.333 -0.400 

H 34 37 36 33 -0.333 -0.333 -0.400 

I 36 32 36 36 -0.333 -0.236 -0.258 

J 34 34 38 34 -0.333 -0.236 -0.258 

Table 5. A hypothetical distribution of terms (rank correlation). 

As can be noted in C, D, I and J, it is not uncommon to find two or more ranks with the 

same number of terms. Although extended measures were used to effectively manage 

tied ranks (e.g. Kendall's tau-b), none of the coefficients above showed sufficient 

discriminating power. For example, E, F, G and H have the same score with any of the 

three coefficients, so DEXTER is still not able to select a winning distribution of terms. 

The problem is that the calculation is not based on the actual values of the data points 

but only on the rank order. 

 As the gradual distribution of terms is based on the assumption that the bulk of 

terms is likely to be found at the top of the list and the number of specialized words 

progressively declines to the bottom, the alternative was to take into consideration the 

cumulative number of terms and precision in each cut-off point (i.e. 1-50, 1-100, 1-150 

and 1-200), where a linear pattern of correlation is usually revealed. For example, 

Figure 3 displays the data points corresponding to the distributions A and B, whose 

best-fitting lines are represented by the dashed line and the dotted line respectively. 
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Figure 3. Two linear distributions of terms. 

In this approach, the distribution of terms can be measured by means of Pearson’s 

product-moment correlation coefficient, since we are concerned with how closely the 

points fit to the line. Table 6 demonstrates that Pearson's correlation coefficient (r) can 

actually get better results with the distributions in Table 5. 

1-50 1-100 1-150 1-200 r 

A 0.74 0.73 0.71 0.70 -0.9881 

E 0.74 0.71 0.69 0.70 -0.8281 

B 0.72 0.73 0.71 0.70 -0.7859 

F 0.74 0.70 0.71 0.70 -0.7402 

G 0.72 0.70 0.71 0.70 -0.6625 

I 0.72 0.68 0.69 0.70 -0.3518 

H 0.68 0.71 0.71 0.70 0.5671 

J 0.68 0.68 0.71 0.70 0.7879 

C 0.68 0.68 0.68 0.70 0.7919 

D 0.64 0.68 0.69 0.70 0.9327 

 

Table 6. A hypothetical distribution of terms (correlation coefficient). 
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Finally, a measure was devised whereby the adequacy of a given distribution of terms 

(a) is calculated primarily on precision (p) and to a lesser degree on the correlation 

coefficient (r), as shown in the equation (19), where e is the exponential constant. 

(19) 

 = !" −
1

2
% 

To conclude, Table 7 shows the scores assigned to the distributions of unigrams in 

Table 4. 

S-R p r a 

1.0-0.0 0.90 -0.9764 2.9478 

0.9-0.1 0.80 -0.9875 2.7193 

0.8-0.2 0.72 -0.9955 2.5522 

0.7-0.3 0.65 -0.9829 2.4070 

0.6-0.4 0.58 -0.9974 2.2847 

0.5-0.5 0.54 -0.9745 2.2033 

0.4-0.6 0.50 -0.9506 2.1240 

0.3-0.7 0.47 -0.9584 2.0792 

0.2-0.8 0.45 -0.9431 2.0399 

0.1-0.9 0.44 -0.9424 2.0239 

0.0-1.0 0.41 -0.9839 1.9988 

Table 7. Scores of term distributions (sample corpus). 

 

2.3.3. Computer-aided term validation 

DEXTER adopts a hybrid approach to term evaluation, since term recognition based on 

the IATE database is integrated with human validation based on experts’ judgements. 

As described by Pazienza et al. (2005: 265), the evaluation of ATE systems has been 
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traditionally performed by means of one of two methods: (a) an a priori reference list of 

terms for the specific domain is used as a gold standard against which to measure the 

system performance, or (b) human experts validate the term candidates extracted by the 

system. It is important to highlight that both methods have drawbacks. With respect to 

(a), the system can extract terminological expressions which are not present in the 

reference list; in this case, although these candidates are true terms, they are treated as 

false negatives. With respect to (b), manual validation is a time-consuming task, as well 

as being prone to the expert’s subjectivity and personal interpretation. DEXTER 

minimizes these problems by adopting both methods. The remainder of this section 

deals with the computer-assisted mode of data validation and clean-up. 

Once the ngrams of a given type are ranked according to their SRC weight, their 

validation is performed from the most specific (i.e. trigrams) to the most generic (i.e. 

unigrams) in relation to their cognitive load. The reason is that the complexity of 

ngrams is proportional to their information content. For example, the information 

content of the unigram championship is lower than that of the bigram football 

championship, and in turn this bigram becomes less informative than the trigram 

European football championship. False candidates (i.e. true negatives and false 

positives) are manually discarded. A key issue at this stage of the validation is that 

DEXTER can provide the context of any term candidate, in the form of a maximum of 

eighty snippets for each candidate with a maximum of 400 characters per fragment. 

Moreover, the user can browse the whole document from where a given snippet has 

been extracted. Since DEXTER is based on the indexation and search capabilities of 

Lucene technology, context retrieval starts with an ngram-based query to the corpus, 

where every document that matches the query during the search is assigned a score 

computing how similar the document is to the query. Indeed, Lucene uses a formula that 
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is primarily based on tf-idf, together with other factors such as coordination, field-

length normalization, and term/query boosting, to calculate the relevance of matching 

documents;
13

 then, DEXTER displays snippets of documents reverse-sorted by this 

score. It is noteworthy that, although most Key-Word-in-Context (KWIC) 

concordancing programs (cf. Wiechmann and Fuhs 2006) allow the user to determine 

the amount of co-text to the left and right of the keyword, they cannot guarantee the 

relevance of the data. It is certainly not a matter of size, i.e. the length of the 

concordance span, but rather of significance, i.e. if meaning arises within the 

concordance span. In this regard, the statistical significance of Lucene's similarity score 

helps to put in the foreground the most relevant contexts of ngrams. 

Finally, candidate space can be reduced on the grounds of lack of term 

nestedness, that is, when one or more terms are embedded in a larger term. For example, 

in the case of bigrams and trigrams, you have the option of discarding all their nested 

ngrams automatically. It is important to make it clear that the degree of nestedness is 

variable, ranging from full to partial nestedness and to no nestedness at all. For 

example, capacitor electrolyte serves to exemplify full nestedness, since both capacitor 

and electrolyte are specialized terms. On the other hand, alternating current illustrates 

partial nestedness, since alternating is not an actual term in the electronics domain. 

Finally, Thomson effect does not have any nestedness, since neither Thomson nor effect 

is a domain-specific term. Therefore, as shown in Figure 3, DEXTER allows you to 

eliminate false candidates in two ways: (a) in case of partial or full nestedness, you only 

eliminate a given ngram by clicking "remove", but (b) in case of no nestedness, you can 

eliminate the false candidate together with all their embedded ngrams by clicking 

"nesting". Indeed, removing all embedded ngrams at one time certainly results in an 

                                                           
13

 Lucene's similarity scoring formula is described in Hatcher et al. (2010: 86-88). 
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effective clean-up method during manual validation, because the number of ngrams that 

can be discarded with just one click amounts to three with a bigram and to six with a 

trigram. 

 

 

Figure 4. Validation and clean-up in DEXTER. 

It could be thought that a metric such as C-value, which is described as “a method to 

improve the extraction of nested terms” (Frantzi et al. 2000: 122), could contribute to 

automate part of the process of data validation. However, as explained in Section 2.3.2, 

C-value would not have been as efficient as expected with bigrams and trigrams in 

small- and medium-sized corpora. 

 

3. Evaluation of DEXTER 
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The evaluation was conducted by comparing the results achieved by DEXTER with 

those obtained by BioTex (Lossio-Ventura, Jonquet, Roche and Teisseire 2014a),
14

 

GaleXtract (Barcala, Domínguez-Noya, Gamallo, López, Moscoso, Rojo, Santalla and 

Sotelo 2007),
15

 Termine (Frantzi et al. 2000)
16

 and TermoStat (Drouin 2003),
17

 whose 

main features are described as follows: 

• BioTex and TermoStat can discover simple and complex terms, whereas 

GaleXtract and Termine recognize just complex terms. 

• Unlike Termine (English), BioTex (English, French, Spanish), GaleXtract 

(English, French, Galician, Portuguese, Spanish) and TermoStat (English, 

French, Italian, Portuguese and Spanish) are multilingual. 

• BioTex, GaleXtract, Termine and TermoStat make use of TreeTagger for the 

POS-based filtering of term candidates. 

• In BioTex, a system for biomedical term extraction, the user can change the 

number of linguistic patterns used to filter term candidates, as well as the 

function (i.e. average, maximum or sum) in the metrics F-Ocapi and F-TFIDF-

C. In this research, BioTex was configured with the default number of linguistic 

patterns (i.e. 200) and with the maximum function, since Lossio-Ventura et al. 

(2014b) demonstrated that this function has the best behaviour for the first 300 

terms after manual validation. 

• GaleXtract and TermoStat employ popular association measures: χ
2
 (Nagao et 

al. 1976), log likelihood (Dunning 1994), mutual information (Church and 

                                                           
14

 http://tubo.lirmm.fr/biotex/ 

15
 http://gramatica.usc.es/~gamallo/php/gale-extra/gale-extra2.1/index.php 

16
 http://www.nactem.ac.uk/software/termine/ 

17
 http://termostat.ling.umontreal.ca 
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Hanks 1990) and symmetric conditional probability (Silva and Lopes 1999) in 

the former, and χ
2
, log likelihood and log odds ratio (Everitt 1992) in the latter. 

Termine makes use of C-value (Frantzi et al. 2000). BioTex employs LIDF-

value, F-OCapi and F-TFIDF-C, where the two latter combine C-value with 

Okapi and TFIDF respectively (Lossio-Ventura, Jonquet, Roche and Teisseire 

2014b, 2014c). 

The evaluation focused on open-access systems with a GUI that could be used to 

support terminology and terminography research. The software that did not contribute 

with different metrics was ignored; for example, AntConc
18

 calculates keyness values 

with χ
2
 or log likelihood, which are already included in TermoStat. Moreover, the 

software that did not allow a proper comparative evaluation was not taken into 

consideration; for example, Translated-Labs Term Extractor
19

 only returns twenty term 

candidates. In fact, although there are a number of so-called term-extraction programs 

on the Web, most of them (e.g. Anchovy
20

 or Okapi's Rainbow)
21

 should be regarded as 

no more than tools that return frequency-sorted lists of ngrams. 

DEXTER was evaluated by assessing the precision of the top-ranked 200 

unigrams, bigrams and trigrams extracted as term candidates from two corpora of 

different domains and languages. The following experiments were devised to 

demonstrate that SRC can outperform not only the metrics of other ATE systems but 

also the results obtained by the single metrics of S (Salience), R (Relevance) and C 

(Cohesion). On the one hand, term extraction was performed on our sample corpus, that 

is, the corpus of 200 English-written documents about electronics. Tables 8, 9 and 10 

                                                           
18

 http://www.laurenceanthony.net/software/antconc/ 

19
 http://labs.translated.net/terminology-extraction/ 

20
 http://www.maxprograms.com/products/anchovy.html 

21
 http://okapi.sourceforge.net 
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present the results of precision after manual validation of the candidates extracted from 

this English corpus. 

 

# 

candidates 

SRC S R χ
2
 Log 

likelihood 

Log odds 

ratio 

1-50 0.92 0.92 0.60 0.82 0.80 0.84 

51-100 0.72 0.72 0.68 0.66 0.58 0.68 

101-150 0.68 0.68 0.40 0.66 0.52 0.58 

151-200 0.72 0.72 0.48 0.64 0.66 0.62 

[1-200] 0.76 0.76 0.54 0.70 0.64 0.68 

 

F-OCapi F-TFIDF-C LIDF-value 

0.82 0.84 0.78 

0.56 0.62 0.50 

0.66 0.54 0.44 

0.48 0.48 0.32 

0.63 0.62 0.51 

Table 8. Precision with unigrams (English corpus). 

 

# 

candidates 

SRC S R C χ
2
 Log 

likelihood 

1-50 0.86 0.86 0.50 0.76 0.60 0.66 

51-100 0.82 0.82 0.42 0.76 0.56 0.44 

101-150 0.66 0.66 0.40 0.46 0.44 0.46 

151-200 0.68 0.68 0.52 0.66 0.34 0.40 
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[1-200] 0.76 0.76 0.46 0.66 0.49 0.49 

 

Log odds 

ratio 

Mutual 

information 

SCP C-value F-OCapi F-TFIDF-C LIDF-

value 

0.58 0.24 0.28 0.78 0.64 0.62 0.72 

0.52 0.28 0.38 0.70 0.46 0.56 0.50 

0.44 0.34 0.34 0.66 0.68 0.50 0.40 

0.40 0.42 0.38 0.60 0.56 0.58 0.44 

0.48 0.32 0.35 0.69 0.58 0.56 0.51 

Table 9. Precision with bigrams (English corpus). 

 

# 

candidates 

SRC S R C χ
2
 Log 

likelihood 

1-50 0.90 0.90 0.66 0.90 0.52 0.56 

51-100 0.84 0.74 0.70 0.80 0.50 0.44 

101-150 0.56 0.56 0.50 0.56 0.26 0.34 

151-200 0.70 0.56 0.62 0.68 0.36 0.34 

[1-200] 0.75 0.69 0.62 0.74 0.41 0.42 

 

Log odds 

ratio 

Mutual 

information 

SCP C-value F-OCapi F-TFIDF-C LIDF-

value 

0.44 0.48 0.50 0.86 0.64 0.64 0.78 

0.42 0.44 0.40 0.68 0.42 0.42 0.60 

0.32 0.46 0.54 0.64 0.24 0.34 0.34 
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Table 10. Precision with trigrams (English corpus). 

On the other hand, term extraction was also performed on a corpus of 100 Spanish texts 

(273,476 tokens) about odontostomatology, whose true domains were Health [2841], 

Health care profession [2841001], Health policy [2841002], Illness [2841003], Medical 

science [2841004], Nutrition [2841005], Pharmaceutical industry [2841006] and Life 

sciences [3606003]; the false domains were Science [36], Natural and applied sciences 

[3606] and Applied sciences [3606001], since their terms are commonly found in many 

scientific disciplines. The documents were obtained from the scientific journal Avances 

en Odontoestomatología.
22

 In this case, additional preprocessing was required during 

corpus compilation, where the English abstract and the list of bibliographical references 

were removed in each document. DEXTER extracted 2,642 unigrams, 385 bigrams and 

110 trigrams as term candidates. Tables 11, 12 and 13 present the results of precision 

after manual validation of the candidates extracted from this Spanish corpus. 

 

# 

candidates 

SRC S R χ
2
 Log 

likelihood 

Log odds 

ratio 

1-50 0.98 0.98 0.96 0.68 0.58 0.92 

51-100 0.88 0.82 0.82 0.76 0.58 0.84 

101-150 0.86 0.78 0.82 0.66 0.54 0.78 

151-200 0.78 0.70 0.74 0.58 0.54 0.72 

[1-200] 0.88 0.82 0.84 0.67 0.56 0.82 

 

                                                           
22

 http://scielo.isciii.es/scielo.php?script=sci_serial&pid=0213-1285&lng=es&nrm=iso 

0.32 0.40 0.32 0.66 0.50 0.52 0.50 

0.37 0.45 0.44 0.71 0.45 0.48 0.55 
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F-OCapi F-TFIDF-C LIDF-value 

0.84 0.78 0.68 

0.72 0.72 0.62 

0.64 0.68 0.56 

0.46 0.64 0.60 

0.67 0.71 0.62 

Table 11. Precision with unigrams (Spanish corpus). 

 

# 

candidates 

SRC S R C χ
2
 Log 

likelihood 

1-50 0.90 0.90 0.76 0.68 0.42 0.44 

51-100 0.86 0.86 0.82 0.74 0.36 0.34 

101-150 0.78 0.74 0.78 0.66 0.40 0.30 

151-200 0.74 0.74 0.72 0.70 0.18 0.32 

[1-200] 0.82 0.81 0.77 0.70 0.34 0.35 

 

Table 12. Precision with bigrams (Spanish corpus). 

 

Log odds 

ratio 

Mutual 

information 

SCP C-value F-OCapi F-TFIDF-C LIDF-

value 

0.46 0.26 0.34 0.40 0.52 0.56 0.48 

0.36 0.26 0.28 0.38 0.40 0.40 0.44 

0.28 0.38 0.28 0.42 0.32 0.36 0.40 

0.36 0.26 0.34 0.40 0.44 0.42 0.48 

0.37 0.29 0.31 0.40 0.42 0.44 0.45 
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# 

candidates 

SRC S R C χ
2
 Log 

likelihood 

1-50 0.82 0.72 0.76 0.82 0.52 0.54 

51-100 0.68 0.68 0.64 0.64 0.34 0.26 

[1-100] 0.75 0.70 0.70 0.73 0.43 0.40 

 

Table 13. Precision with trigrams (Spanish corpus).
23

 

 

Tables 14 and 15 display the values of each SRC coefficient for the unigrams, bigrams 

and trigrams in the two corpora. 

type α β γ 

unigrams 1 0 - 

bigrams 1 0 0 

trigrams 0.2 0 0.8 

Table 14. SRC coefficients for the English corpus. 

 

type α β γ 

unigrams 0.8 0.2 - 

                                                           
23

 Due to the limited number of trigrams extracted from the Spanish corpus by DEXTER, only the top-

ranked 100 candidates were taken into account in the evaluation of precision. 

Log odds 

ratio 

Mutual 

information 

SCP C-value F-OCapi F-TFIDF-C LIDF-

value 

0.48 0.44 0.50 0.54 0.56 0.50 0.54 

0.20 0.32 0.32 0.22 0.20 0.24 0.26 

0.34 0.38 0.41 0.38 0.38 0.37 0.40 
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bigrams 0.6 0.4 0 

trigrams 0.6 0 0.4 

Table 15. SRC coefficients for the Spanish corpus. 

 

The evaluation of precision required manual validation, since term recognition is not a 

fully reliable process. IATE is not a full-fledged terminological database, not to mention 

duplicates, incomplete entries, misspellings or obsolete data that can be found (Zorrilla-

Agut 2013). The key issue is that gold standards in terminology can be recognised as 

exemplars of quality but not of perfection. Indeed, term recognition with IATE raised 

both false negatives and false positives; for example, manual evaluation revealed 10 

unigrams (e.g. amp or watt), 48 bigrams (e.g. Darlington transistor or Schmitt inverter) 

and 127 trigrams (e.g. Kirchoffs Current Law or Wheatstone Bridge circuit) as false 

negatives and 37 unigrams (e.g. device, maximum or unit) and 6 bigrams (e.g. input 

signal) as false positives among the top 200 SRC-ranked ngrams from the English 

corpus. In both experiments, manual validation was carried out by three terminologists. 

The problem is that, "since the definition of termhood is pretty vague, it is likely that 

experts produce different validations, based on their own intuition of term" (Pazienza et 

al. 2005: 265). Evaluators need to rely on a clear notion of what a term is. A definition 

of term such as "a designation consisting of one or more words representing a general 

concept in a special language in a specific subject field" (ISO 704 2009: 34) is very 

vague for practical purposes. In order to deal effectively with this problem, it should be 

recalled that terms can be categorized into neonyms, existing forms or translingual 

loans. For obvious reasons, neonyms and translingual loans don’t raise any problem 

during term validation. However, existing forms do not help to determine clear criteria 

to identify domain-specific terms. Paradoxically, most ATE researchers (cf. Park et al. 
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2002; Zhang et al. 2008; Knoth et al. 2009) are concerned with the number and/or 

profile of the evaluators involved in the experiments rather than with a clear definition 

of what a term is. All experts agree that defining such a criterion is not an easy task, so 

how can evaluators decide that a given candidate is a “good glossary item” or it is 

“characteristic for the domain”? In the evaluation of SRC, we crystallized this decision-

making process into a flowchart (Figure 4), where the most critical question was that of 

the relevance of definitions. 

 

Figure 5. Flowchart for term validation. 

Thus, once the definition of the term candidate was obtained from the corpus itself or 

from other specialized resources (e.g. Google Books and Wikipedia), the evaluator 

explored the definiens to find at least one lexical item that could be related to any of the 

true domains of the corpus; if so, the ngram was validated. As scientific and technical 

definitions are aimed at giving insights into the subject matter to which the defined term 

pertains, it can be concluded that the definiens provides a means for the discovery of the 

specialized domain of the definiendum. Thus, the flowchart was used as a guideline to 

find verifiable evidence for both single- and multi-word terms. This model of evaluation 
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favours final agreement among human judgements, since decisions must be based on 

textual evidence. 

The flowchart proved to be particularly useful to differentiate between complex 

terminological units and phraseological collocations. For example, should coil of wire 

and coil rotation be considered terms of electronics? On the one hand, coil of wire was 

selected as a term because its definition includes three words, i.e. resistor, voltage and 

inductor, which undoubtedly pertain to the electronics terminology: 

 

A coil of wire is simply a resistor as far as steady voltage is concerned, but 

for alternating voltages it behaves as an inductor. (Sinclair 2011: 36) 

 

On the other hand, the flowchart did not reveal coil rotation as a term but only as a 

statistically significant co-occurrence (i.e. collocation). To illustrate, we present some 

valid and non-valid term candidates related to the domain of the English corpus: 

• Valid term candidates: (a) unigrams: capacitance, farad, galvanometer or 

voltage; (b) bigrams: Ohm’s law, PN junction, RLC circuit or square wave; and 

(c) trigrams: magnetic flux linkage, metal film resistor, solid state relay or 

voltage divider circuit. 

• Non-valid term candidates: (a) unigrams: centimeter, theorem, tutorial or vector; 

(b) bigrams: capacitance value, high frequency, input signal or time constant; 

and (c) trigrams: changes in temperature, Greek symbol phi, speed of rotation or 

upper threshold level. 

The analysis of non-valid term candidates revealed that false positives usually take the 

form of (a) common words, e.g. maximum or value, and (b) complex ngrams nested in 
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longer multi-word candidates, e.g. width modulation (pulse width modulation) or 

permanent magnet DC (permanent magnet DC motor). 

Moreover, although it is well known that nouns and noun phrases make up the 

bulk of term candidates, both experiments showed that some adjectives (e.g. astable, 

capacitive, inductive, sinusoidal or voltaic [electronics]; birradicular, dentinario, 

estomatológico, gingival, hemostático, malar, mesiodistal or periodontal 

[odontostomatology]) and verbs (e.g. amplify, rectify or regulate [electronics]; bruñir or 

suturar [odontostomatology]) can be closely linked to specialized domains. 

Both experiments demonstrated that the best precision was obtained with SRC. 

Indeed, if ranges are inspected, it can be realized that on just one occasion SRC was 

outperformed in the twenty-two different cut-off points along the top 200 unigrams, 

bigrams and trigrams. Moreover, like C-value (Termine) and the metrics based on C-

value (BioTex), SRC shows a rather gradual distribution of positive candidates in the 

extracted list, where true terms tend to be attracted to the top of the list. 

Since the values of the SRC coefficients can be different for unigrams, bigrams 

and trigrams (Tables 14 and 15), it makes sense to have separated lists of term 

candidates to evaluate the behaviour of the various types of ngrams, providing useful 

evidence to support corpus-based terminology and terminography research. If we finally 

choose to compile a global list of candidates, then the challenge is to significantly 

correlate scores that belong to different normal distributions (i.e. each with a different 

mean and standard deviation). In this context, Z-score standardization helps to 

determine which unigrams, bigrams and trigrams are at a similar distance from the mean 

in their respective distributions, so we can position candidates with similar Z-scores 

close together in the ranking. To illustrate, the global list of ngrams from the English 

corpus showed the best precision with the top-ranked 200 ngrams (0.88); in this case, 
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precision was also better in each range: 0.94 for 1-50, 0.98 for 51-100, 0.84 for 101-150 

and 0.76 for 151-200. 

 

4. Conclusions 

This article analyzed the term-extraction process that takes place in DEXTER, an online 

workbench that consists of a suite of corpus and terminological tools with such diverse 

functionalities as corpus compilation and management, document indexation and 

retrieval, query elaboration, textual exploration, and term weighting and validation. The 

components of DEXTER that play a critical role in the ATE process, and that have 

contributed to make some headway in the field of ATE, are (i) the stopword-detection 

method, (ii) the SRC metric, and (iii) the IATE database. On the one hand, DEXTER is 

provided with a multilingual and multi-domain method that aims to reduce the 

inventory of term candidates by filtering simple and complex ngrams on the basis of the 

common stopwords detected automatically in the given specialized corpus. On the other 

hand, SRC is a parameterized metric for term ranking that relies on the theoretical 

principles of (a) salience, which measures the prevalence of terms in the document 

collection, (b) relevance, which measures the tendency in the usage of terms between a 

domain-specific corpus and a general-purpose one, and (c) cohesion, which measures 

the degree of stability of multi-word terms. Finally, the IATE database not only enables 

DEXTER to recognize domain-specific terms but, even more important, helps to 

determine the values of the SRC coefficients by placing best term candidates in the 

foreground. 

This research was able to demonstrate that the requirements described in the 

introduction were successfully implemented in DEXTER: 
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Requirement 1. SRC outperforms the results of well-known statistical-significance 

metrics (e.g. χ
2
, log likelihood, log odds ratio, mutual information and SCP) as well as 

C-value and other metrics based on the latter (e.g. F-OCapi and F-TFIDF-C). The 

effectiveness of SRC, whose parameters enable the system to deal with a wide diversity 

of specialized corpora, was measured with respect to precision. 

Requirement 2. DEXTER can extract simple and complex terms (i.e. unigrams, bigrams 

and trigrams) with the same metric. 

Requirement 3. DEXTER can recognize domain-specific terms of different grammatical 

categories, e.g. nouns, verbs and adjectives, by means of shallow lexical filters rather 

than elaborate morphosyntactic patterns. It has been proved that the precision of 

DEXTER is better than that of those systems that adopt a hybrid method for term 

extraction (e.g. BioTex, GaleXtract, Termine and TermoStat), where the statistical 

approach is applied to the output of POS taggers. 

Requirement 4. DEXTER is capable of processing corpora in several languages (i.e. 

English, French, Italian and Spanish) by means of knowledge-poor procedures that do 

not entail sophisticated NLP techniques. Indeed, this term extractor is provided with a 

few language-dependent resources—i.e. stemmer, lemmatizer and stopword list. For 

each language, the stopword list contains (a) functional words that were manually 

obtained from the grammar of the language, and (b) common words that are discovered 

at runtime using an adaptive method applied to the domain-specific corpus and a 

general corpus from the Leipzig Corpora Collection. Together with the IATE database, 

these resources serve to automatically tune the SRC coefficients for the extraction of 

specialized lexical units. 

Requirement 5. DEXTER integrates corpus management and term extraction in a single 

platform with a user-friendly interface primarily intended for linguistic research. 
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Future research is aimed at increasing the number of languages (currently four) and the 

types of ngrams (currently up to trigrams) that DEXTER can process. 
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